EQUILIBRIUM ASSET PRICING WITH FRICTIONS

Hui Chen

MIT and NBER

SAIF Summer Camp 2018

OUTLINE

EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS

2 Incomplete Markets

(3) A Framework with Many Nested Models

When the Dark Side of Circuit Breakers

- Overview
- The Model
- Impact of Circuit Breakers
- Conclusion

OUTLINE

EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS

2 INCOMPLETE MARKETS

3 A FRAMEWORK WITH MANY NESTED MODELS

The Dark Side of Circuit Breakers

- Overview
- The Model
- Impact of Circuit Breakers
- Conclusion

CONTINGENT CLAIMS EQUILIBRIUM

- $(\Omega, \mathcal{F}, P), \mathcal{T} = \{0, 1, \cdots, T\}, \text{ and } \mathbb{F}.$
- Full set of contingent claims: in zero net supply; can be traded only at date 0.
- *I* agents: $U_i: \mathcal{L}^+ \to \mathbb{R}$ strictly increasing and continuous.
- Endowment for agent *i*: $e_i \in \mathcal{L}^+$

CONTINGENT CLAIMS EQUILIBRIUM

- $(\Omega, \mathcal{F}, P), \mathcal{T} = \{0, 1, \cdots, T\}, \text{ and } \mathbb{F}.$
- Full set of contingent claims: in zero net supply; can be traded only at date 0.
- *I* agents: $U_i: \mathscr{L}^+ \to \mathbb{R}$ strictly increasing and continuous.
- Endowment for agent *i*: $e_i \in \mathcal{L}^+$

DEFINITION

A contingent claims (CC) equilibrium is a price process $\psi \in \mathcal{L}$ and a vector of consumption plans $(c_1, ..., c_I) \in \mathcal{L}_I$ such that

• (optimization) c_i is optimal for agent *i*;

(market-clearing)
$$\sum_{i=1}^{I} c_i = \sum_{i=1}^{I} e_i$$
.

DEFINITION

A consumption allocation is a vector $(c^1, ..., c^I)$ of consumption plans.

DEFINITION

A consumption allocation is a vector $(c^1, ..., c^I)$ of consumption plans.

DEFINITION

A consumption allocation $(c^1, ..., c^I)$ is feasible iff $c \le e$.

DEFINITION

A consumption allocation is a vector $(c^1, ..., c^I)$ of consumption plans.

DEFINITION

A consumption allocation $(c^1, ..., c^I)$ is feasible iff $c \le e$.

DEFINITION

A feasible consumption allocation $(c^1, ..., c^I)$ is Pareto optimal iff there does not exist a feasible allocation $(\hat{c}^1, ..., \hat{c}^I)$ such that $U_i(\hat{c}_i) \ge U_i(c_i)$ for all i, and $U_i(\hat{c}_i) > U_i(c_i)$ for at least one i.

FIRST WELFARE THEOREM

The CC equilibrium consumption allocation is Pareto optimal.

Representative agent problem (\mathscr{R})

For a set of weights λ_i , we define

$$U(c) = \max_{c_1, \dots, c_I} \sum_{i=1}^{I} \frac{1}{\lambda_i} U_i(c_i)$$
$$c_i \in \mathscr{L}^+, \quad \sum_{i=1}^{I} c_i \le c$$

THEOREM

There exist weights λ_i such that the equilibrium consumption allocation solves the problem \mathcal{R} for the aggregate consumption c = e. Moreover, the equilibrium price process ψ and the consumption plan c = e is an equilibrium for the representative agent economy.

PROPOSITION

Suppose that for all *i*, U_i is a time-additive expected utility, $U_i(c_i) = E_0 \sum_{t=0}^{T} u_{i,t}(c_{i,t})$. Then *U* is a time-additive expected utility,

$$U(c) = E_0 \sum_{t=0}^T u_t(c_t).$$

Moreover,

$$u_t(c_t) = \max_{c_{1,t},\dots,c_{I,t}} \sum_{i=1}^{I} \frac{1}{\lambda_i} u_{i,t}(c_{i,t}),$$
$$c_{i,t} \in \mathcal{L}^+, \quad \sum_{i=1}^{I} c_{i,t} \le c_t.$$

PROPOSITION

Suppose that for all *i*, U_i is a time-additive expected utility, $U_i(c_i) = E_0 \sum_{t=0}^{T} u_{i,t}(c_{i,t})$. Then *U* is a time-additive expected utility,

$$U(c) = E_0 \sum_{t=0}^T u_t(c_t).$$

Moreover,

$$u_t(c_t) = \max_{c_{1,t},\dots,c_{I,t}} \sum_{i=1}^{I} \frac{1}{\lambda_i} u_{i,t}(c_{i,t}),$$
$$c_{i,t} \in \mathcal{L}^+, \quad \sum_{i=1}^{I} c_{i,t} \le c_t.$$

Instead of a large set of contingent claims, assume there are *N* securities characterized by a dividend process δ , and a time *T* price *S*_{*T*}. We set *S*_{*T*} = 0.

- Instead of a large set of contingent claims, assume there are *N* securities characterized by a dividend process δ , and a time *T* price *S*_{*T*}. We set *S*_{*T*} = 0.
- The supply of the securities is $x = (x_1, ..., x_N)$.

- Instead of a large set of contingent claims, assume there are *N* securities characterized by a dividend process δ , and a time *T* price *S*_{*T*}. We set *S*_{*T*} = 0.
- The supply of the securities is $x = (x_1, ..., x_N)$.
- Agent *i* receives consumption endowment e_i + period-0 endowment in securities $\overline{\theta}_{i,0}$

$$\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$$

- Instead of a large set of contingent claims, assume there are *N* securities characterized by a dividend process δ , and a time *T* price *S*_{*T*}. We set *S*_{*T*} = 0.
- The supply of the securities is $x = (x_1, ..., x_N)$.
- Agent *i* receives consumption endowment e_i + period-0 endowment in securities $\overline{\theta}_{i,0}$

$$\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$$

• Agent *i*'s problem \mathcal{P}_i is

$$\begin{split} \max_{C_i} U_i(c_i) \\ c_i \in \mathcal{L}^+ \cap (M + e_i + \overline{\theta}_{i,0} S_0). \end{split}$$

- Instead of a large set of contingent claims, assume there are *N* securities characterized by a dividend process δ , and a time *T* price *S*_{*T*}. We set *S*_{*T*} = 0.
- The supply of the securities is $x = (x_1, ..., x_N)$.
- Agent *i* receives consumption endowment e_i + period-0 endowment in securities $\overline{\theta}_{i,0}$

$$\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$$

• Agent *i*'s problem \mathcal{P}_i is

$$\max_{c_i} U_i(c_i)$$

$$c_i \in \mathscr{L}^+ \cap (M + e_i + \overline{\theta}_{i,0} S_0).$$

A consumption plan c_i is optimal iff it solves \mathcal{P}_i . A trading strategy θ_i is optimal iff it finances $c_i^* - e_i - \overline{\theta}_{i,0} S_0$.

DEFINITION

A securities market (SM) equilibrium is a price process $S \in \mathcal{L}^N$ and a vector of trading strategies $(\theta_1, ..., \theta_I) \in \mathcal{L}^{NI}$ such that

- **(***optimization*) θ_i *is optimal for agent i*
- (market-clearing)

$$\sum_{i=1}^{I} \theta_i = x, \quad \sum_{i=1}^{I} c_i = \sum_{i=1}^{I} e_i + x\delta.$$

EXAMPLE

Consider an economy with two agents. Both have time separable preferences of the form

$$U_{i} = E_{0} \left[\sum_{t=0}^{T} \frac{1}{1 - \gamma_{i}} [(c_{i,t})^{1 - \gamma_{i}} - 1] \right]$$

where $\gamma_1 = 1$ and $\gamma_2 = 1/2$.

- There exists a complete set of contingent claims in zero net supply and also a single share of long-lived asset, stock, with a dividend process δ_t . Each agent is endowed with half a share at time zero.
- Characterize the stock price process in this economy.

• Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.

- Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.
- *N* securities with dividends $\delta = (\delta_{1,t}, ..., \delta_{N,t}) \in (\mathcal{L}^1)^N$ and time-*T* price $S_T = (S_{1,T}, ..., S_{N,T})$. The supply of the securities is $x = (x_1, ..., x_N)$.

- Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.
- *N* securities with dividends $\delta = (\delta_{1,t}, ..., \delta_{N,t}) \in (\mathcal{L}^1)^N$ and time-*T* price $S_T = (S_{1,T}, ..., S_{N,T})$. The supply of the securities is $x = (x_1, ..., x_N)$.
- I agents:

$$U_{i}(c_{i}, C_{i,T}) = E\left[\int_{0}^{T} u_{i,t}(c_{i,t})dt + U_{i,T}(C_{i,T})\right]$$

 $U_i(c_i, C_{i,T}) = E \left[\int_0^{\infty} u_{i,t} u_{i,t} \right]$ and $U_{i,T}$ strictly increasing and concave.

- Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.
- *N* securities with dividends $\delta = (\delta_{1,t}, ..., \delta_{N,t}) \in (\mathcal{L}^1)^N$ and time-*T* price $S_T = (S_{1,T}, ..., S_{N,T})$. The supply of the securities is $x = (x_1, ..., x_N)$.
- I agents:

$$U_{i}(c_{i}, C_{i,T}) = E\left[\int_{0}^{T} u_{i,t}(c_{i,t})dt + U_{i,T}(C_{i,T})\right]$$

 $u_{i,t}$ and $U_{i,T}$ strictly increasing and concave.

Endowment: Agent *i* receives an endowment of the consumption good at a rate $e_i \in \mathscr{L}^1$. He also receives an endowment $\overline{\theta}_{i,0}$ of the securities at time 0; $\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$.

- Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.
- *N* securities with dividends $\delta = (\delta_{1,t}, ..., \delta_{N,t}) \in (\mathcal{L}^1)^N$ and time-*T* price $S_T = (S_{1,T}, ..., S_{N,T})$. The supply of the securities is $x = (x_1, ..., x_N)$.
- I agents:

$$U_{i}(c_{i}, C_{i,T}) = E\left[\int_{0}^{T} u_{i,t}(c_{i,t}) dt + U_{i,T}(C_{i,T})\right]$$

 $u_{i,t}$ and $U_{i,T}$ strictly increasing and concave.

- Endowment: Agent *i* receives an endowment of the consumption good at a rate $e_i \in \mathscr{L}^1$. He also receives an endowment $\overline{\theta}_{i,0}$ of the securities at time 0; $\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$.
- Security price processes:

$$dS_t = I_{S_t} \overline{\mu}_t dt + I_{S_t} \overline{\sigma}_t dZ_t,$$

where $\mu \in (\mathcal{L}^1)^N$ and $\sigma \in (\mathcal{L}^2)^{N \times d}$.

- Consider a probability space (Ω, \mathcal{F}, P) , a time interval $\mathcal{T} = [0, T]$, a Brownian motion $Z = (Z_1, .., Z_d)$ on (Ω, \mathcal{F}, P) , and the standard filtration \mathbb{F} of Z.
- *N* securities with dividends $\delta = (\delta_{1,t}, ..., \delta_{N,t}) \in (\mathcal{L}^1)^N$ and time-*T* price $S_T = (S_{1,T}, ..., S_{N,T})$. The supply of the securities is $x = (x_1, ..., x_N)$.
- I agents:

$$U_{i}(c_{i}, C_{i,T}) = E\left[\int_{0}^{T} u_{i,t}(c_{i,t}) dt + U_{i,T}(C_{i,T})\right]$$

 $u_{i,t}$ and $U_{i,T}$ strictly increasing and concave.

- Endowment: Agent *i* receives an endowment of the consumption good at a rate $e_i \in \mathscr{L}^1$. He also receives an endowment $\overline{\theta}_{i,0}$ of the securities at time 0; $\sum_{i=1}^{I} \overline{\theta}_{i,0} = x$.
- Security price processes:

$$dS_t = I_{S_t} \overline{\mu}_t dt + I_{S_t} \overline{\sigma}_t dZ_t,$$

where $\mu \in (\mathcal{L}^1)^N$ and $\sigma \in (\mathcal{L}^2)^{N \times d}$.

• We assume that trading strategies are in $\mathscr{L}(S)$ and are such that the stochastic integral $\int_0^t \theta_s d(S_s/B_s)$ is a martingale under *Q*.

EQUILIBRIUM IN CONTINUOUS TIME

INDIVIDUAL AGENT PROBLEM: \mathscr{P}_i

 $\max_{c_i, C_{i,T}} U(c_i, C_{i,T})$ $(c_i, C_{i,T}) \in \mathcal{C}_i,$

where \mathcal{C}_i the set of feasible cash flows for agent *i*. A consumption plan $(c_i, C_{i,T})$ is optimal iff it solves \mathcal{P}_i .

EQUILIBRIUM IN CONTINUOUS TIME

INDIVIDUAL AGENT PROBLEM: \mathscr{P}_i

 $\max_{c_i, C_{i,T}} U(c_i, C_{i,T})$ $(c_i, C_{i,T}) \in \mathcal{C}_i,$

where \mathscr{C}_i the set of feasible cash flows for agent *i*. A consumption plan $(c_i, C_{i,T})$ is optimal iff it solves \mathscr{P}_i .

DEFINITION (SECURITIES MARKET EQUILIBRIUM)

A securities market (SM) equilibrium is a price process S, a vector of trading strategies $(\theta_1, ..., \theta_I)$, and consumption policies $(c_1, ..., c_I)$, such that

(optimization) (c_i, θ_i) is optimal for agent i

(market-clearing)

$$\sum_{i=1}^I \theta_i = x, \quad x\delta + \sum_{i=1}^I (e_i - c_i) = 0.$$

OUTLINE

D EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS

2 Incomplete Markets

3 A FRAMEWORK WITH MANY NESTED MODELS

The Dark Side of Circuit Breakers

- Overview
- The Model
- Impact of Circuit Breakers
- Conclusion

• Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t \, dt + \sigma \delta_t \, dZ_t$$

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t \, dt + \sigma \delta_t \, dZ_t$$

2 types of agents

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t dt + \sigma \delta_t dZ_t$$

- 2 types of agents
 - \hookrightarrow Type 1:

$$E_0\left[\int_0^T e^{-\rho t} u(c_{1,t}) \, dt\right]$$

participates in both the stock and the bond market.

THE MODEL

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t dt + \sigma \delta_t dZ_t$$

2 types of agents

 \hookrightarrow Type 1:

$$E_0\left[\int_0^T e^{-\rho t} u(c_{1,t}) \, dt\right]$$

participates in both the stock and the bond market.

 \hookrightarrow Type 2

$$E_0\left[\int_0^T e^{-\rho t} \ln(c_{2,t}) \, dt\right]$$

can only trade in the bond market.

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t dt + \sigma \delta_t dZ_t$$

2 types of agents

 \hookrightarrow Type 1:

$$E_0\left[\int_0^T e^{-\rho t} u(c_{1,t}) \, dt\right]$$

participates in both the stock and the bond market.

 \hookrightarrow Type 2

$$E_0\left[\int_0^T e^{-\rho t} \ln(c_{2,t}) \, dt\right]$$

can only trade in the bond market.

Initial endowments:
The model

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t \, dt + \sigma \delta_t \, dZ_t$$

2 types of agents

 \hookrightarrow Type 1:

$$E_0\left[\int_0^T e^{-\rho t} u(c_{1,t}) \, dt\right]$$

participates in both the stock and the bond market.

→ Type 2

$$E_0\left[\int_0^T e^{-\rho t} \ln(c_{2,t}) \, dt\right]$$

can only trade in the bond market.

Initial endowments:

 \rightarrow At time *t* = 0, agent 2 is endowed with *A* units of the bond, priced at 1.

The model

- Follow Basak and Cuoco (1998). Limited (exogenously) stock market participation.
- Exchange economy. One stock. Risk-free bond in zero net supply.
- Dividend on the stock

$$d\delta_t = \mu \delta_t \, dt + \sigma \delta_t \, dZ_t$$

2 types of agents

→ Type 1:

$$E_0\left[\int_0^T e^{-\rho t} u(c_{1,t}) \, dt\right]$$

participates in both the stock and the bond market.

→ Type 2

$$E_0\left[\int_0^T e^{-\rho t} \ln(c_{2,t}) \, dt\right]$$

can only trade in the bond market.

Initial endowments:

- \rightarrow At time *t* = 0, agent 2 is endowed with *A* units of the bond, priced at 1.
- \hookrightarrow Agent 1 is endowed with one share of the stock, is short A shares of the bond.

- Consider the constrained agent.
- Market price of risk in fictitious market $\eta^{(\lambda)}$, interest rate $r^{(\lambda)} = r + \delta(\lambda_t)$.
- Since the constrained agent can freely access the bond market,

$$r_t^{(\lambda)} = r_t$$

- Consider the constrained agent.
- Market price of risk in fictitious market $\eta^{(\lambda)}$, interest rate $r^{(\lambda)} = r + \delta(\lambda_t)$.
- Since the constrained agent can freely access the bond market,

$$r_t^{(\lambda)} = r_t$$

• Logarithmic agent is myopic:

$$\phi_t^{(\lambda)} = \frac{\eta^{(\lambda)}}{\overline{\sigma}_R}$$

In equilibrium, stock holding of the constrained agent is zero, conclude

$$\eta^{(\lambda)} = 0$$

- Consider the constrained agent.
- Market price of risk in fictitious market $\eta^{(\lambda)}$, interest rate $r^{(\lambda)} = r + \delta(\lambda_t)$.
- Since the constrained agent can freely access the bond market,

$$r_t^{(\lambda)} = r_t$$

• Logarithmic agent is myopic:

$$\phi_t^{(\lambda)} = \frac{\eta^{(\lambda)}}{\overline{\sigma}_R}$$

In equilibrium, stock holding of the constrained agent is zero, conclude

$$\eta^{(\lambda)} = 0$$

State-price density of the constrained agent

$$d\pi_t^{(c)} = -r_t\pi_t^{(c)}\,dt \quad \Rightarrow \quad \pi_t^{(c)} = B_t^{-1}$$

• π_t is state-price density of the unconstrained agent, η is market price of risk

 $d\pi_t = -r_t \pi_t \, dt - \eta_t \pi_t \, dZ_t$

• π_t is state-price density of the unconstrained agent, η is market price of risk

$$d\pi_t = -r_t \pi_t \, dt - \eta_t \pi_t \, dZ_t$$

• Optimality conditions:

$$e^{-\rho t} u'_1(c_{1,t}) = a_1 \pi_t, e^{-\rho t} u'_2(c_{2,t}) = a_2 B_t^{-1}$$

• π_t is state-price density of the unconstrained agent, η is market price of risk

$$d\pi_t = -r_t \pi_t \, dt - \eta_t \pi_t \, dZ_t$$

• Optimality conditions:

$$e^{-\rho t} u'_1(c_{1,t}) = a_1 \pi_t, e^{-\rho t} u'_2(c_{2,t}) = a_2 B_t^{-1}$$

Define ratio of SDFs

$$\xi_t = \frac{a_1 \pi_t}{a_2 \pi_t^{(c)}} = \frac{a_1}{a_2} \pi_t B_t.$$

• π_t is state-price density of the unconstrained agent, η is market price of risk

$$d\pi_t = -r_t \pi_t \, dt - \eta_t \pi_t \, dZ_t$$

• Optimality conditions:

$$e^{-\rho t} u'_1(c_{1,t}) = a_1 \pi_t, e^{-\rho t} u'_2(c_{2,t}) = a_2 B_t^{-1}$$

Define ratio of SDFs

$$\xi_t = \frac{a_1 \pi_t}{a_2 \pi_t^{(c)}} = \frac{a_1}{a_2} \pi_t B_t.$$

Consumption-sharing rule

$$\frac{u_1'(c_{1,t})}{u_2'(c_{2,t})} = \xi_t, \quad c_{1,t} + c_{2,t} = \delta_t$$

• π_t is state-price density of the unconstrained agent, η is market price of risk

$$d\pi_t = -r_t \pi_t \, dt - \eta_t \pi_t \, dZ_t$$

• Optimality conditions:

$$e^{-\rho t} u'_1(c_{1,t}) = a_1 \pi_t, e^{-\rho t} u'_2(c_{2,t}) = a_2 B_t^{-1}$$

Define ratio of SDFs

$$\xi_t = \frac{a_1 \pi_t}{a_2 \pi_t^{(c)}} = \frac{a_1}{a_2} \pi_t B_t.$$

Consumption-sharing rule

$$\frac{u_1'(c_{1,t})}{u_2'(c_{2,t})} = \xi_t, \quad c_{1,t} + c_{2,t} = \delta_t$$

Solution: $c_{1,t} = F(\xi_t, \delta_t)$

MARKET CLEARING

• Characterize dynamics of ξ_t using market clearing conditions.

$$\frac{d\xi_t}{\xi_t} = \frac{d\pi_t}{\pi_t} + \frac{dB_t}{B_t} = -r_t dt - \eta_t dZ_t + r_t dt = -\eta_t dZ_t$$

Then

$$\frac{d\xi_t}{\xi_t} = \operatorname{stoch}\left(\frac{u_1''(c_{1,t})}{u_1'(c_{1,t})} \, dc_{1,t}\right) = \frac{u_1''(F(\xi_t, \delta_t))}{u_1'(F(\xi_t, \delta_t))} \, \sigma \delta_t \, dZ_t$$

MARKET CLEARING

• Characterize dynamics of ξ_t using market clearing conditions.

$$\frac{d\xi_t}{\xi_t} = \frac{d\pi_t}{\pi_t} + \frac{dB_t}{B_t} = -r_t dt - \eta_t dZ_t + r_t dt = -\eta_t dZ_t$$

Then

$$\frac{d\xi_t}{\xi_t} = \operatorname{stoch}\left(\frac{u_1''(c_{1,t})}{u_1'(c_{1,t})} \, dc_{1,t}\right) = \frac{u_1''(F(\xi_t, \delta_t))}{u_1'(F(\xi_t, \delta_t))} \, \sigma \delta_t \, dZ_t$$

 \hookrightarrow Last equality follows from

$$dc_{1,t} = d\delta_t - dc_{2,t}$$

and

$$\operatorname{stoch}(dc_{2,t}) = 0$$

MARKET CLEARING

• Characterize dynamics of ξ_t using market clearing conditions.

$$\frac{d\xi_t}{\xi_t} = \frac{d\pi_t}{\pi_t} + \frac{dB_t}{B_t} = -r_t dt - \eta_t dZ_t + r_t dt = -\eta_t dZ_t$$

Then

$$\frac{d\xi_t}{\xi_t} = \operatorname{stoch}\left(\frac{u_1''(c_{1,t})}{u_1'(c_{1,t})} \, dc_{1,t}\right) = \frac{u_1''(F(\xi_t, \delta_t))}{u_1'(F(\xi_t, \delta_t))} \, \sigma \delta_t \, dZ_t$$

 \hookrightarrow Last equality follows from

$$dc_{1,t} = d\delta_t - dc_{2,t}$$

and

$$\operatorname{stoch}(dc_{2,t}) = 0$$

Given initial value ξ₀, completely characterize equilibrium allocations.
Then compute prices using SPD

$$\pi_t = e^{-\rho t} \frac{u_1'(c_{1,t})}{u_1'(c_{1,0})}$$

Equilibrium

- Initial condition ξ_0 determined by budget constraint of agent 2.
- Optimal consumption policy of the log agent

$$c_{2,0} = W_{2,0} \left(\frac{1 - e^{-\rho T}}{\rho}\right)^{-1}, \quad W_{2,0} = A$$

• Using definition of ξ_t

$$\xi_t = u_1'(c_{1,t})c_{2,t}$$

• ξ_0 must solve

$$\frac{\xi_0}{u_1'(F(\xi_0,\delta_0))} \frac{1 - e^{-\rho T}}{\rho} = A$$

EQUILIBRIUM

- Initial condition ξ_0 determined by budget constraint of agent 2.
- Optimal consumption policy of the log agent

$$c_{2,0} = W_{2,0} \left(\frac{1 - e^{-\rho T}}{\rho}\right)^{-1}, \quad W_{2,0} = A$$

• Using definition of ξ_t

$$\xi_t = u_1'(c_{1,t})c_{2,t}$$

• ξ_0 must solve

$$\frac{\xi_0}{u_1'(F(\xi_0,\delta_0))} \frac{1 - e^{-\rho T}}{\rho} = A$$

Limited participation increases market price of risk

$$\eta_t = -\frac{c_{1,t} u_1''(c_{1,t})}{u_1'(c_{1,t})} \frac{\delta_t}{c_{1,t}} \sigma$$

It is common to interpret ξ_t as the stochastic utility weight

 $\sup u_1(c_1) + \xi u_2(c_2)$ s.t. $c_1 + c_2 = \delta$

Stochastic Pareto-Negishi weights, ξ_t .

It is common to interpret ξ_t as the stochastic utility weight

 $\sup u_1(c_1) + \xi u_2(c_2)$ s.t. $c_1 + c_2 = \delta$

- Stochastic Pareto-Negishi weights, ξ_t .
- Solve for ξ_t instead of searching for price processes directly.

It is common to interpret ξ_t as the stochastic utility weight

 $\sup u_1(c_1) + \xi u_2(c_2)$ s.t. $c_1 + c_2 = \delta$

- Stochastic Pareto-Negishi weights, ξ_t .
- Solve for ξ_t instead of searching for price processes directly.
- Note: high volatility of ξ_t implies high volatility of SDF.

It is common to interpret ξ_t as the stochastic utility weight

 $\sup u_1(c_1) + \xi u_2(c_2)$ s.t. $c_1 + c_2 = \delta$

- Stochastic Pareto-Negishi weights, ξ_t .
- Solve for ξ_t instead of searching for price processes directly.
- Note: high volatility of ξ_t implies high volatility of SDF.
- Under complete markets, ξ_t is constant.

Assume agent 1 also has log utility.

$$c_2 = \frac{\xi}{\xi+1}\delta, \quad c_1 = \frac{\delta}{\xi+1}$$

Assume agent 1 also has log utility.

$$c_2 = \frac{\xi}{\xi+1}\delta, \quad c_1 = \frac{\delta}{\xi+1}$$

• Evolution of ξ_t is given by

$$d\xi_t = -\xi_t \sigma \frac{\delta_t}{c_{1,t}} dZ_t = -\xi_t (\xi_t + 1) \sigma dZ_t$$

Assume agent 1 also has log utility.

$$c_2 = \frac{\xi}{\xi+1}\delta, \quad c_1 = \frac{\delta}{\xi+1}$$

Evolution of ξ_t is given by

$$d\xi_t = -\xi_t \sigma \frac{\delta_t}{c_{1,t}} \, dZ_t = -\xi_t (\xi_t + 1) \sigma \, dZ_t$$

Initial condition satisfies

$$\xi_0 \frac{\delta_0}{1+\xi_0} \frac{1-e^{-\rho T}}{\rho} = A \quad \Rightarrow \quad \xi_0 = \frac{\rho A}{\delta_0 (1-e^{-\rho T}) - \rho A}$$

Assume agent 1 also has log utility.

$$c_2 = \frac{\xi}{\xi+1}\delta, \quad c_1 = \frac{\delta}{\xi+1}$$

Evolution of ξ_t is given by

$$d\xi_t = -\xi_t \sigma \frac{\delta_t}{c_{1,t}} \, dZ_t = -\xi_t (\xi_t + 1) \sigma \, dZ_t$$

Initial condition satisfies

$$\xi_0 \frac{\delta_0}{1+\xi_0} \frac{1-e^{-\rho T}}{\rho} = A \quad \Rightarrow \quad \xi_0 = \frac{\rho A}{\delta_0 (1-e^{-\rho T}) - \rho A}$$

Solve for ξ_0

$$S_0 = \frac{1 - e^{-\rho T}}{\rho} \delta_0 \quad \Rightarrow \quad \xi_0 = \frac{A}{S_0 - A} = \frac{W_{2,0}}{W_{1,0}}$$

Assume agent 1 also has log utility.

$$c_2 = \frac{\xi}{\xi+1}\delta, \quad c_1 = \frac{\delta}{\xi+1}$$

Evolution of ξ_t is given by

$$d\xi_t = -\xi_t \sigma \frac{\delta_t}{c_{1,t}} dZ_t = -\xi_t (\xi_t + 1) \sigma dZ_t$$

Initial condition satisfies

$$\xi_0 \frac{\delta_0}{1+\xi_0} \frac{1-e^{-\rho T}}{\rho} = A \quad \Rightarrow \quad \xi_0 = \frac{\rho A}{\delta_0 (1-e^{-\rho T}) - \rho A}$$

Solve for ξ_0

$$S_0 = \frac{1 - e^{-\rho T}}{\rho} \delta_0 \quad \Rightarrow \quad \xi_0 = \frac{A}{S_0 - A} = \frac{W_{2,0}}{W_{1,0}}$$

• At t = 0,

$$\eta_0 = (1 + \xi_0)\sigma$$
 / in $\frac{W_{2,0}}{W_{1,0}}$

T 4 7

Risk-free rate

$$\pi_t = e^{-\rho t} \frac{1+\xi_t}{\delta_t}, \quad E_t \left[-\frac{d\pi_t}{\pi_t} \right] = r_t dt$$

$$r_0 = \rho + \mu - (1 + \xi_0)\sigma^2$$

• Volatility of stock returns is still equal to the volatility of dividend growth.

rate.

OUTLINE

D EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS

2 INCOMPLETE MARKETS

3 A FRAMEWORK WITH MANY NESTED MODELS

When the Dark Side of Circuit Breakers

- Overview
- The Model
- Impact of Circuit Breakers
- Conclusion

Starting Point: Brunnermeier & Sannikov (2016)

- Starting Point: Brunnermeier & Sannikov (2016)
- Agent Types: "Households" and "Experts"

- Starting Point: Brunnermeier & Sannikov (2016)
- Agent Types: "Households" and "Experts"

Technology

- \hookrightarrow A-K production function with $a_e \ge a_h$
- → TFP shocks (also called "capital quality shocks")
- \hookrightarrow growth rate and stochastic vol shocks (long-run risk)
- → idiosyncratic shocks

- Starting Point: Brunnermeier & Sannikov (2016)
- Agent Types: "Households" and "Experts"

Technology

- \hookrightarrow A-K production function with $a_e \ge a_h$
- → TFP shocks (also called "capital quality shocks")
- \hookrightarrow growth rate and stochastic vol shocks (long-run risk)
- → idiosyncratic shocks

Markets

- → Capital traded (with shorting constraint)
- → Complete financial markets for households
- \hookrightarrow Experts facing "skin-in-the-game" equity issuance constraint

- Starting Point: Brunnermeier & Sannikov (2016)
- Agent Types: "Households" and "Experts"

Technology

- \hookrightarrow A-K production function with $a_e \ge a_h$
- → TFP shocks (also called "capital quality shocks")
- \hookrightarrow growth rate and stochastic vol shocks (long-run risk)
- → idiosyncratic shocks

Markets

- → Capital traded (with shorting constraint)
- → Complete financial markets for households
- → Experts facing "skin-in-the-game" equity issuance constraint

Preferences

- → Recursive utility
- \hookrightarrow Households and experts potentially different
- → OLG for technical reasons

"Nesting" Model

MODELS NESTED

Complete markets with long run risk

- → Bansal & Yaron (2004)
- → Hansen, Heaton & Li (2008)

MODELS NESTED

Complete markets with long run risk

- → Bansal & Yaron (2004)
- → Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences

- \hookrightarrow Longstaff & Wang (2012)
- → Garleanu & Panageas (2015)
MODELS NESTED

Complete markets with long run risk

- → Bansal & Yaron (2004)
- → Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences

- \hookrightarrow Longstaff & Wang (2012)
- → Garleanu & Panageas (2015)

Complete markets for agg. risk with idiosyncratic shocks

→ Di Tella (2017)

MODELS NESTED

Complete markets with long run risk

- → Bansal & Yaron (2004)
- → Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences

- \hookrightarrow Longstaff & Wang (2012)
- → Garleanu & Panageas (2015)

Complete markets for agg. risk with idiosyncratic shocks

→ Di Tella (2017)

Incomplete market/limited participation models

- → Basak & Cuoco (1998)
- → Kogan & Makarov & Uppal (2007)
- → He & Krishnamurthy (2012)

MODELS NESTED

Complete markets with long run risk

- → Bansal & Yaron (2004)
- → Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences

- \hookrightarrow Longstaff & Wang (2012)
- → Garleanu & Panageas (2015)

Complete markets for agg. risk with idiosyncratic shocks

→ Di Tella (2017)

Incomplete market/limited participation models

- → Basak & Cuoco (1998)
- → Kogan & Makarov & Uppal (2007)
- → He & Krishnamurthy (2012)

Incomplete market/capital misallocation models

→ Brunnermeier & Sannikov (2014, 2016)

OUTLINE

D EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS

INCOMPLETE MARKETS

3 A FRAMEWORK WITH MANY NESTED MODELS

THE DARK SIDE OF CIRCUIT BREAKERS

- Overview
- The Model
- Impact of Circuit Breakers
- Conclusion

CIRCUIT BREAKERS

What is it?

- \hookrightarrow Trading halt following extreme price movements.
- \hookrightarrow Market-wide CBs; CBs for individual stocks.
- → First advocated by the Brady Commission following the Black Monday of 1987.
 Now widely adopted around the world.

Why?

- \hookrightarrow To reduce excess volatility and improve price efficiency?
- → To restore orderly trading in the market?
- → To protect investors?

What are the consequences?

CIRCUIT BREAKERS: U.S. EXPERIENCE

Market-wide CB was triggered only once in the U.S. since 1988.

DJIA on Oct 27, 1997 7,800 7,600 7,400 7,200 9:30 10:30 11:30 14:00 15:00 16:00

CIRCUIT BREAKERS: CHINESE EXPERIENCE

First implemented on Jan 04, 2016, following the market crash in summer 2015. Abandoned after just 4 days.

- This paper: A neoclassical benchmark to examine how CBs affect trading and price dynamics.
 - \hookrightarrow Abstract away from informational frictions, strategic behavior.
 - \hookrightarrow Focus on the basic risk-sharing trading motive.
 - \hookrightarrow Dynamic and quantitative effects.

- This paper: A neoclassical benchmark to examine how CBs affect trading and price dynamics.
 - → Abstract away from informational frictions, strategic behavior.
 - \hookrightarrow Focus on the basic risk-sharing trading motive.
 - \hookrightarrow Dynamic and quantitative effects.
- CBs tend to have the following effects:
 - Price level \Downarrow (price distortion \Uparrow)
 - ② Volatility: daily price range ↓ conditional & realized vol ↑
 - (a) "Magnet effect": increase "hitting probability" relative to complete markets.
 - Stronger effects during earlier part of the trading day

- This paper: A neoclassical benchmark to examine how CBs affect trading and price dynamics.
 - \hookrightarrow Abstract away from informational frictions, strategic behavior.
 - \hookrightarrow Focus on the basic risk-sharing trading motive.
 - \hookrightarrow Dynamic and quantitative effects.
- CBs tend to have the following effects:
 - Price level \Downarrow (price distortion \Uparrow)
 - ② Volatility: daily price range ↓ conditional & realized vol ↑
 - (a) "Magnet effect": increase "hitting probability" relative to complete markets.
 - Stronger effects during earlier part of the trading day

Policy implications

- This paper: A neoclassical benchmark to examine how CBs affect trading and price dynamics.
 - \hookrightarrow Abstract away from informational frictions, strategic behavior.
 - \hookrightarrow Focus on the basic risk-sharing trading motive.
 - \hookrightarrow Dynamic and quantitative effects.
- CBs tend to have the following effects:
 - Price level \Downarrow (price distortion \Uparrow)
 - ② Volatility: daily price range ↓ conditional & realized vol \Uparrow
 - (a) "Magnet effect": increase "hitting probability" relative to complete markets.
 - Stronger effects during earlier part of the trading day
- Policy implications
- Model is tractable and can be adapted to study dynamic effects of illiquidity in other settings.

© HUI CHEN (MIT SLOAN)

RELATED LITERATURE

Theory on trading halts:

- \hookrightarrow Greenwald and Stein (1988, 1991)
- → Subrahmanyam (1994, 1995)
- → Periodic trading halts: Hong and Wang (2000)
- Runs in financial markets: Diamond and Dybvig (1983), Bernardo and Welch (2004)
- Empirical evidence: Lee, Ready, Seguin (1994), Christie, Corwin, Harris (2002), Goldstein and Kavajecz (2004)

MODEL SETUP

A continuous-time endowment economy over interval [0, *T*].

• Aggregate stock: one unit, with terminal dividend D_T .

$$dD_t = \mu D_t dt + \sigma D_t dZ_t, \quad D_0 = 1$$

Riskless bond: net supply Δ , pays off 1 at time *T*.

MODEL SETUP

A continuous-time endowment economy over interval [0, *T*].

• Aggregate stock: one unit, with terminal dividend D_T .

$$dD_t = \mu D_t dt + \sigma D_t dZ_t, \quad D_0 = 1$$

Riskless bond: net supply Δ , pays off 1 at time *T*.

- Two competitive agents: A and B
 - \hookrightarrow Endowed with ω and 1ω shares of the stock and bond.
 - → Log preferences over terminal wealth

$$u_i(W_T^i) = \ln(W_T^i), \quad i = \{A, B\}$$

• No intermediate consumption \Rightarrow riskless bond as numeraire.

- The two agents disagree about the growth rate of dividend.
- Agent *A* has objective beliefs:

$$\mu^A = \mu$$

Agent B's belief:

$$\mu_t^B = \mu + \delta_t$$

- \hookrightarrow Constant disagreement: $\delta_t \equiv \delta$
- \hookrightarrow Extrapolative disagreement: $d\delta_t = v dZ_t$
- The two agents "agree to disagree."

- The two agents disagree about the growth rate of dividend.
- Agent *A* has objective beliefs:

$$\mu^A = \mu$$

Agent B's belief:

$$\mu_t^B = \mu + \delta_t$$

- \hookrightarrow Constant disagreement: $\delta_t \equiv \delta$
- \hookrightarrow Extrapolative disagreement: $d\delta_t = v dZ_t$
- The two agents "agree to disagree."
- Need trading. Heterogeneous risk aversion works similarly.

- Agent *B*'s probability measure \mathbb{P}^B is equivalent to \mathbb{P} .
- **Radon**-Nikodym derivative of measure \mathbb{P}^B with respect to \mathbb{P} :

$$\eta_t = \exp\left(\frac{1}{\sigma}\int_0^t \delta_s dZ_s - \frac{1}{2\sigma^2}\int_0^t \delta_s^2 ds\right)$$

- Agent *B*'s probability measure \mathbb{P}^B is equivalent to \mathbb{P} .
- Radon-Nikodym derivative of measure \mathbb{P}^{B} with respect to \mathbb{P} :

$$\eta_t = \exp\left(\frac{1}{\sigma}\int_0^t \delta_s dZ_s - \frac{1}{2\sigma^2}\int_0^t \delta_s^2 ds\right)$$

- Intuition: Think of η_t as likelihood ratio.
 - → Agent *B* will be more optimistic than *A* when $\delta_t > 0$. Then, those paths with high realized values for $\int_0^t \delta_s Z_s$ will be assigned higher probabilities under \mathbb{P}^B than under \mathbb{P} .

CIRCUIT BREAKERS

The stock market will be closed until *T* whenever the price of the stock S_t falls below the level $(1 - \alpha)S_0$.

$$\tau = \inf\{t \ge 0 : S_t = (1 - \alpha)S_0\}$$

- $\hookrightarrow \alpha$: circuit breaker limit, $\alpha \in [0, 1]$
- \hookrightarrow S₀: initial stock price endogenous
- After stock market closure agents are not able to change their stock postions
- Bond market remains open throughout the interval [0, *T*].

EQUILIBRIUM: NO CIRCUIT BREAKERS

■ Markets are dynamically complete ⇒ solve for equilibrium via the planner's problem.

$$\max_{\widehat{W}_{T}^{A}, \widehat{W}_{T}^{B}} \mathbb{E}_{0} \left[\lambda \ln \left(\widehat{W}_{T}^{A} \right) + (1 - \lambda) \eta_{T} \ln \left(\widehat{W}_{T}^{B} \right) \right]$$

subject to resource constraint

$$\widehat{W}_T^A + \widehat{W}_T^B = D_T + \Delta$$

EQUILIBRIUM: NO CIRCUIT BREAKERS

■ Markets are dynamically complete ⇒ solve for equilibrium via the planner's problem.

$$\max_{\widehat{W}_{T}^{A}, \widehat{W}_{T}^{B}} \mathbb{E}_{0} \left[\lambda \ln \left(\widehat{W}_{T}^{A} \right) + (1 - \lambda) \eta_{T} \ln \left(\widehat{W}_{T}^{B} \right) \right]$$

subject to resource constraint

$$\widehat{W}_T^A + \widehat{W}_T^B = D_T + \Delta$$

Stock price when $\Delta \rightarrow 0$: wealth-weighted average of the prices under two agents' beliefs

$$\widehat{S}_t = \left(\frac{\widehat{\omega}_t^A}{\widehat{S}_t^A} + \frac{\widehat{\omega}_t^B}{\widehat{S}_t^B}\right)^{-1}$$

 $\hookrightarrow \widehat{S}_{t}^{i}$: price in a single-agent economy with agent i $\hookrightarrow \widehat{\omega}_{t}^{i}$: agent *i*'s wealth share

EQUILIBRIUM: NO CIRCUIT BREAKERS

Special case: constant disagreement

$$\widehat{S}_t = \left(\frac{\widehat{\omega}_t^A}{\widehat{S}_t^A} + \frac{\widehat{\omega}_t^B}{\widehat{S}_t^B}\right)^{-1}$$

where

$$\widehat{S}_t^A = D_t e^{(\mu - \sigma^2)(T - t)}$$
$$\widehat{S}_t^B = D_t e^{(\mu + \delta - \sigma^2)(T - t)}$$

Valuation gap: $e^{\delta(T-t)}$

EQUILIBRIUM: CIRCUIT BREAKERS

Two scenarios:

- \hookrightarrow CB is not triggered between 0 and *T*;
- \hookrightarrow CB is triggered at time $\tau < T$.
- Markets are still dynamically complete over interval $[0, \tau \land T]$.

EQUILIBRIUM: CIRCUIT BREAKERS

- Two scenarios:
 - \hookrightarrow CB is not triggered between 0 and *T*;
 - \hookrightarrow CB is triggered at time $\tau < T$.
- Markets are still dynamically complete over interval $[0, \tau \land T]$.
- Solution strategy:
 - Pin down stopping rule τ consistent with a given stopping price <u>S</u> through equilibrium conditions upon market closure.
 - **②** Given stopping time τ , solve for equilibrium allocation at $\tau \wedge T$ via planner's problem.
 - Sompute price at $t \le \tau \land T$ for given τ and \underline{S} , $S_t(\tau, \underline{S})$.
 - Solve for <u>S</u> through the fixed point problem,

$$\underline{S} = (1 - \alpha)S_0(\underline{S})$$

EQUILIBRIUM: UPON MARKET CLOSURE

- Suppose agent *i* has wealth W_{τ}^{i} at time $\tau \leq T$.
- Portfolio problem at time τ for competitive agents:

$$V^{i}(W^{i}_{\tau},\tau) = \max_{\theta^{i}_{\tau},\phi^{i}_{\tau}} \mathbb{E}^{i}_{\tau} \left[\ln(\theta^{i}_{\tau}D_{T} + \phi^{i}_{\tau}) \right]$$

s.t. $\theta^{i}_{\tau}S_{\tau} + \phi^{i}_{\tau} = W^{i}_{\tau}$
 $W^{i}_{T} \ge 0$

 $V^i(W^i_\tau,\tau)$: indirect utility function for agent i at time τ

Market clearing conditions:

$$\theta_{\tau}^{A} + \theta_{\tau}^{B} = 1$$
 (stock market)
 $\phi_{\tau}^{A} + \phi_{\tau}^{B} = \Delta$ (bond market)

Equilibrium ($\Delta \rightarrow 0$ case): Upon Market Closure

• Market closure \Rightarrow inability to rebalance between τ and T

- \hookrightarrow Illiquidity + log utility \Rightarrow no short or levered position at τ
- \hookrightarrow Leverage constraint binds for the optimistic agent
 - \Rightarrow pessimistic agent becomes the marginal investor.
- \hookrightarrow Assumption $\Delta \rightarrow 0$ to be relaxed later.

Equilibrium ($\Delta \rightarrow 0$ case): Upon Market Closure

• Market closure \Rightarrow inability to rebalance between τ and T

- \hookrightarrow Illiquidity + log utility \Rightarrow no short or levered position at τ
- \hookrightarrow Leverage constraint binds for the optimistic agent
 - \Rightarrow pessimistic agent becomes the marginal investor.
- \hookrightarrow Assumption $\Delta \rightarrow 0$ to be relaxed later.

PROPOSITION

In the limiting case with $\Delta \rightarrow 0$, upon market closure at $\tau < T$, both agents will hold all of their wealth in the stock with no bonds. The market clearing price is

 $S_{\tau} = \min\{\widehat{S}_{\tau}^A, \widehat{S}_{\tau}^B\}$

• Stopping rule τ is expressed in closed form as a function of state variables.

Characterizing the stopping time au

LEMMA

Take the stopping price \underline{S} as given. Define a stopping time

 $\tau = \inf\{t \ge 0 : D_t = \underline{D}(t, \delta_t, \underline{S})\}.$

Then the circuit breaker is triggered at time τ when $\tau \leq T$.

Characterizing the stopping time au

LEMMA

Take the stopping price \underline{S} as given. Define a stopping time

 $\tau = \inf\{t \ge 0 : D_t = \underline{D}(t, \delta_t, \underline{S})\}.$

Then the circuit breaker is triggered at time τ when $\tau \leq T$.

We have managed to characterize a stopping time that is based on the endogenous stock price S_t as one that is based on the exogenous processes of D_t and δ_t.

EQUILIBRIUM: BEFORE MARKET CLOSURE

Solve for optimal allocation at $\tau \wedge T$ through the planner problem, using the indirect utilities upon market closure:

$$\max_{W^{A}_{\tau \wedge T}, W^{B}_{\tau \wedge T}} \mathbb{E}_{0} \left[\lambda V^{A}(W^{A}_{\tau \wedge T}, \tau \wedge T) + (1 - \lambda) \eta_{T} V^{B}(W^{B}_{\tau \wedge T}, \tau \wedge T) \right]$$

subject to

$$W^A_{\tau \wedge T} + W^B_{\tau \wedge T} = S_{\tau \wedge T} + \Delta$$

EQUILIBRIUM: BEFORE MARKET CLOSURE

Solve for optimal allocation at $\tau \wedge T$ through the planner problem, using the indirect utilities upon market closure:

$$\max_{W^{A}_{\tau \wedge T}, W^{B}_{\tau \wedge T}} \mathbb{E}_{0} \left[\lambda V^{A}(W^{A}_{\tau \wedge T}, \tau \wedge T) + (1 - \lambda)\eta_{T} V^{B}(W^{B}_{\tau \wedge T}, \tau \wedge T) \right]$$

subject to

$$W^A_{\tau \wedge T} + W^B_{\tau \wedge T} = S_{\tau \wedge T} + \Delta$$

• The price of the stock at time $t \le \tau \land T$:

$$S_t = \mathbb{E}_t \left[\frac{\pi_{\tau \wedge T}^A}{\pi_t^A} S_{\tau \wedge T} \right] = \left(\omega_t^A \mathbb{E}_t [S_{\tau \wedge T}^{-1}] + \omega_t^B \mathbb{E}_t^B [S_{\tau \wedge T}^{-1}] \right)^{-1}$$

Equilibrium: \underline{S}

Fixed point problem

$$\underline{S} = (1 - \alpha)S_0(\tau(\underline{S}), \underline{S}) \tag{(*)}$$

PROPOSITION

There is a unique solution to (*) *for any* $\alpha \in [0, 1]$ *.*

SPECIAL CASE: CONSTANT DISAGREEMENT

Calibration:

- \hookrightarrow T = 1
- \hookrightarrow $\mu = 10\%/250$
- $\hookrightarrow \sigma = 3\%$
- $\hookrightarrow \alpha = 5\%$
- $\rightarrow \delta = -2\%$ Agent B is pessimistic.
- $\hookrightarrow \omega = 90\%$ Most wealth initially owned by rational agent.

PRICE AND AGENT A'S PORTFOLIO HOLDINGS

Dotted line – complete markets, solid – circuit breakers, horizontal dashed – S/D ratio in representative-agent economies

CONDITIONAL RETURN VOLATILITY AND RISK PREMIUM

Dotted line – complete markets, solid – circuit breakers, horizontal dashed – volatility ratio in a representative-agent economy

STRONGER EFFECTS EARLIER DURING TRADING SESSION

CIRCUIT BREAKER VS. PRE-SCHEDULED TRADING HALT

STOCHASTIC DISAGREEMENTS

Assume δ_t follows a random walk:

 $d\delta_t = v dZ_t$

- $\delta_0 = 0$: Agent *B* initially (and on average) has no biased beliefs.
- Interpretation:
 - → "Representativeness" bias in behavioral finance.
 - → Investors facing leverage/risk constraint: effectively more (less) pessimistic or risk averse as the constraint tightens (loosens).

STOCHASTIC DISAGREEMENTS

Assume δ_t follows a random walk:

 $d\delta_t = v dZ_t$

- $\delta_0 = 0$: Agent *B* initially (and on average) has no biased beliefs.
- Interpretation:
 - ↔ "Representativeness" bias in behavioral finance.
 - → Investors facing leverage/risk constraint: effectively more (less) pessimistic or risk averse as the constraint tightens (loosens).
- Calibration:
 - \hookrightarrow T = 1
 - \hookrightarrow $\mu = 10\%/250$
 - $\hookrightarrow \sigma = 3\%$
 - $\hookrightarrow \alpha = 5\%$
 - $\hookrightarrow \delta = -2\% \Rightarrow v = \sigma$
 - $\hookrightarrow \omega = 90\%$

t = 0.75

THE "MAGNET EFFECT"

Probability to hit threshold as a function of price at t = 0.25

- \hookrightarrow Dotted line: complete markets
- → Solid line: with circuit breakers

Volatility amplification and CB limit α

WELFARE

Two ways to think about welfare in this model.

- Compute welfare under agents' respective beliefs
 - \hookrightarrow CBs reduce welfare
- Paternalistic view: Compute welfare under objective probability measure.
 - \hookrightarrow CBs can increase welfare

Welfare Loss as a Function of Rational Agent Initial Share of Wealth

- ω initial wealth share of agent A
- Welfare loss is relative to the complete markets case.

WELFARE LOSS: PATERNALISTIC VIEW

- ω initial wealth share of agent A
- Welfare loss is relative to both agents having objective beliefs.

POSITIVE BOND SUPPLY

- With positive bond supply, it is possible that optimistic agent can hold the entire stock market at market closure.
- Could change which constraint (leverage or short-selling) becomes binding at market closing.
- If short-selling constraint binds, relative optimist becomes marginal ⇒ Price level ↑, volatility ↓
- Depends on total bond supply + initial wealth distribution.

INTUITION: PRICE UPON MARKET CLOSURE $\tau = 0.25, \quad \Delta = 0.2$ 0.95 0.948 0.946 0.944 S_T 0.942 0.94 0.938 0.936 0.934 -0.20.2 1 0 0.4 0.6 0.8 1.2 Share of wealth of agent A: θ_{τ}

Realized Volatility with $\Delta>0$

SAIF SUMMER CAMP

ROBUSTNESS AND EXTENSIONS

- Bounded shocks (discrete time)
 - \hookrightarrow No need to completely delever/close short positions.
 - \hookrightarrow Equilibrium can "flip" like with positive bond supply.
- Upside vs. downside CBs
- CBs based other variables: volatility, volume
- Multiple-tiered CBs

CONCLUSION

A competitive benchmark to study the dynamic effects of CBs.

- CBs tend to have the following effects:
 - \hookrightarrow Lower the price-dividend ratio (increase price distortion)
 - \hookrightarrow Daily price range \Downarrow , conditional and realized volatility \Uparrow
 - \hookrightarrow Magnet Effect: raise probability of the stock price to reach the threshold limit

CONCLUSION

A competitive benchmark to study the dynamic effects of CBs.

- CBs tend to have the following effects:
 - \hookrightarrow Lower the price-dividend ratio (increase price distortion)
 - \hookrightarrow Daily price range \Downarrow , conditional and realized volatility \Uparrow
 - \hookrightarrow Magnet Effect: raise probability of the stock price to reach the threshold limit
- Main mechanism applies to other forms of disappearing liquidity: price limits, short-sale ban, trading frequency restrictions, sudden price jumps

CONCLUSION

A competitive benchmark to study the dynamic effects of CBs.

- CBs tend to have the following effects:
 - \hookrightarrow Lower the price-dividend ratio (increase price distortion)
 - \hookrightarrow Daily price range \Downarrow , conditional and realized volatility \Uparrow
 - \hookrightarrow Magnet Effect: raise probability of the stock price to reach the threshold limit
- Main mechanism applies to other forms of disappearing liquidity: price limits, short-sale ban, trading frequency restrictions, sudden price jumps
- Policy implications:
 - \hookrightarrow "Reduce volatility": Which volatility?
 - → Lucas critique: Danger of using historical data to estimate the likelihood of CB trigger after implementation.