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CONTINGENT CLAIMS EQUILIBRIUM

(Ω,F ,P), T = {0,1, · · · ,T }, and F.

Full set of contingent claims: in zero net supply; can be traded only at date 0.

I agents: Ui : L + →R strictly increasing and continuous.

Endowment for agent i: ei ∈L +

DEFINITION

A contingent claims (CC) equilibrium is a price process ψ ∈L and a vector of

consumption plans (c1, ..,cI ) ∈LI such that

1 (optimization) ci is optimal for agent i;

2 (market-clearing)
∑I

i=1 ci =∑I
i=1 ei.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 4 / 62



CONTINGENT CLAIMS EQUILIBRIUM

(Ω,F ,P), T = {0,1, · · · ,T }, and F.

Full set of contingent claims: in zero net supply; can be traded only at date 0.

I agents: Ui : L + →R strictly increasing and continuous.

Endowment for agent i: ei ∈L +

DEFINITION

A contingent claims (CC) equilibrium is a price process ψ ∈L and a vector of

consumption plans (c1, ..,cI ) ∈LI such that

1 (optimization) ci is optimal for agent i;

2 (market-clearing)
∑I

i=1 ci =∑I
i=1 ei.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 4 / 62



PARETO OPTIMALITY

DEFINITION

A consumption allocation is a vector (c1, ..,cI ) of consumption plans.

DEFINITION

A consumption allocation (c1, ..,cI ) is feasible iff c ≤ e.

DEFINITION

A feasible consumption allocation (c1, ..,cI ) is Pareto optimal iff there does not exist a

feasible allocation (ĉ1, .., ĉI ) such that Ui(ĉi) ≥ Ui(ci) for all i, and Ui(ĉi) > Ui(ci) for at

least one i.
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PARETO OPTIMALITY

FIRST WELFARE THEOREM

The CC equilibrium consumption allocation is Pareto optimal.
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REPRESENTATIVE AGENT

REPRESENTATIVE AGENT PROBLEM (R)
For a set of weights λi, we define

U(c) = max
c1,..,cI

I∑
i=1

1

λi
Ui(ci)

ci ∈L +,
I∑

i=1
ci ≤ c
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REPRESENTATIVE AGENT

THEOREM

There exist weights λi such that the equilibrium consumption allocation solves the

problem R for the aggregate consumption c = e. Moreover, the equilibrium price

process ψ and the consumption plan c = e is an equilibrium for the representative

agent economy.
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REPRESENTATIVE AGENT

PROPOSITION

Suppose that for all i, Ui is a time-additive expected utility, Ui(ci) = E0
∑T

t=0 ui,t (ci,t ). Then U is

a time-additive expected utility,

U(c) = E0

T∑
t=0

ut (ct ).

Moreover,

ut (ct ) = max
c1,t ,..,cI ,t

I∑
i=1

1

λi
ui,t (ci,t ),

ci,t ∈L+,
I∑

i=1
ci,t ≤ ct .
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SECURITIES MARKET EQUILIBRIUM

Instead of a large set of contingent claims, assume there are N securities characterized

by a dividend process δ, and a time T price ST . We set ST = 0.

The supply of the securities is x = (x1, ..,xN ).

Agent i receives consumption endowment ei + period-0 endowment in securities θi,0

I∑
i=1

θi,0 = x

Agent i’s problem P i is

max
ci

Ui(ci)

ci ∈L+∩ (M +ei +θi,0S0).

A consumption plan ci is optimal iff it solves P i. A trading strategy θi is optimal iff it

finances c∗i −ei −θi,0S0.
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SECURITIES MARKET EQUILIBRIUM

DEFINITION

A securities market (SM) equilibrium is a price process S ∈L N and a vector of trading

strategies (θ1, ..,θI ) ∈L NI such that

1 (optimization) θi is optimal for agent i

2 (market-clearing)
I∑

i=1
θi = x,

I∑
i=1

ci =
I∑

i=1
ei +xδ.
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SECURITIES MARKET EQUILIBRIUM

EXAMPLE

Consider an economy with two agents. Both have time separable preferences of the form

Ui = E0

[
T∑

t=0

1

1−γi
[(ci,t )1−γi −1]

]

where γ1 = 1 and γ2 = 1/2.

There exists a complete set of contingent claims in zero net supply and also a single share

of long-lived asset, stock, with a dividend process δt . Each agent is endowed with half a

share at time zero.

Characterize the stock price process in this economy.
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MODEL SETUP IN CONTINUOUS TIME

Consider a probability space (Ω,F ,P), a time interval T = [0,T ], a Brownian motion

Z = (Z1, ..,Zd) on (Ω,F ,P), and the standard filtration F of Z .

N securities with dividends δ= (δ1,t , ..,δN ,t ) ∈ (L 1)N and time-T price

ST = (S1,T , ..,SN ,T ). The supply of the securities is x = (x1, ..,xN ).

I agents:

Ui(ci,Ci,T ) = E

[∫ T

0
ui,t (ci,t )dt +Ui,T (Ci,T )

]
ui,t and Ui,T strictly increasing and concave.

Endowment: Agent i receives an endowment of the consumption good at a rate ei ∈L 1.

He also receives an endowment θi,0 of the securities at time 0;
∑I

i=1 θi,0 = x.

Security price processes:

dSt = IStµt dt + IStσt dZt ,

where µ ∈ (L 1)N and σ ∈ (L 2)N×d .

We assume that trading strategies are in L (S) and are such that the stochastic integral∫ t
0 θsd(Ss/Bs) is a martingale under Q.
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EQUILIBRIUM IN CONTINUOUS TIME

INDIVIDUAL AGENT PROBLEM: P i

max
ci ,Ci,T

U(ci,Ci,T )

(ci,Ci,T ) ∈Ci,

where Ci the set of feasible cash flows for agent i. A consumption plan (ci,Ci,T ) is optimal iff it

solves P i.

DEFINITION (SECURITIES MARKET EQUILIBRIUM)
A securities market (SM) equilibrium is a price process S, a vector of trading strategies (θ1, ..,θI ),

and consumption policies (c1, ..,cI ), such that

1 (optimization) (ci,θi) is optimal for agent i

2 (market-clearing)
I∑

i=1
θi = x, xδ+

I∑
i=1

(ei − ci) = 0.
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THE MODEL

Follow Basak and Cuoco (1998). Limited (exogenously) stock market

participation.

Exchange economy. One stock. Risk-free bond in zero net supply.

Dividend on the stock

dδt =µδt dt +σδt dZt

2 types of agents

,→ Type 1:

E0

[∫ T

0
e−ρt u(c1,t )dt

]
participates in both the stock and the bond market.

,→ Type 2

E0

[∫ T

0
e−ρt ln(c2,t )dt

]
can only trade in the bond market.

Initial endowments:

,→ At time t = 0, agent 2 is endowed with A units of the bond, priced at 1.

,→ Agent 1 is endowed with one share of the stock, is short A shares of the bond.
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INDIVIDUAL OPTIMIZATION

Consider the constrained agent.

Market price of risk in fictitious market η(λ), interest rate r(λ) = r+δ(λt ).

Since the constrained agent can freely access the bond market,

r(λ)
t = rt

Logarithmic agent is myopic:

φ(λ)
t = η(λ)

σR

In equilibrium, stock holding of the constrained agent is zero, conclude

η(λ) = 0

State-price density of the constrained agent

dπ(c)
t =−rtπ

(c)
t dt ⇒ π(c)

t = B−1
t
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INDIVIDUAL OPTIMIZATION

πt is state-price density of the unconstrained agent, η is market price of risk

dπt =−rtπt dt −ηtπt dZt

Optimality conditions:

e−ρt u′
1(c1,t ) = a1πt ,

e−ρt u′
2(c2,t ) = a2B−1

t

Define ratio of SDFs

ξt = a1πt

a2π
(c)
t

= a1

a2
πt Bt .

Consumption-sharing rule

u′
1(c1,t )

u′
2(c2,t )

= ξt , c1,t + c2,t = δt

Solution: c1,t = F(ξt ,δt )
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MARKET CLEARING

Characterize dynamics of ξt using market clearing conditions.

dξt

ξt
= dπt

πt
+ dBt

Bt
=−rt dt −ηt dZt + rt dt =−ηt dZt

Then
dξt

ξt
= stoch

(
u′′

1 (c1,t )

u′
1(c1,t )

dc1,t

)
= u′′

1 (F(ξt ,δt ))

u′
1(F(ξt ,δt ))

σδt dZt

,→ Last equality follows from

dc1,t = dδt −dc2,t

and

stoch(dc2,t ) = 0

Given initial value ξ0, completely characterize equilibrium allocations.

Then compute prices using SPD

πt = e−ρt u′
1(c1,t )

u′
1(c1,0)
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EQUILIBRIUM

Initial condition ξ0 determined by budget constraint of agent 2.

Optimal consumption policy of the log agent

c2,0 = W2,0

(
1−e−ρT

ρ

)−1

, W2,0 = A

Using definition of ξt

ξt = u′
1(c1,t )c2,t

ξ0 must solve
ξ0

u′
1(F(ξ0,δ0))

1−e−ρT

ρ
= A

Limited participation increases market price of risk

ηt =−c1,t u′′
1 (c1,t )

u′
1(c1,t )

δt

c1,t
σ
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DISCUSSION

It is common to interpret ξt as the stochastic utility weight

supu1(c1)+ξu2(c2) s.t. c1 + c2 = δ

Stochastic Pareto-Negishi weights, ξt .

Solve for ξt instead of searching for price processes directly.

Note: high volatility of ξt implies high volatility of SDF.

Under complete markets, ξt is constant.
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LOGARITHMIC PREFERENCES

Assume agent 1 also has log utility.

c2 = ξ

ξ+1
δ, c1 = δ

ξ+1

Evolution of ξt is given by

dξt =−ξtσ
δt

c1,t
dZt =−ξt (ξt +1)σdZt

Initial condition satisfies

ξ0
δ0

1+ξ0

1−e−ρT

ρ
= A ⇒ ξ0 = ρA

δ0(1−e−ρT )−ρA

Solve for ξ0

S0 = 1−e−ρT

ρ
δ0 ⇒ ξ0 = A

S0 −A
= W2,0

W1,0

At t = 0,

η0 = (1+ξ0)σ ↗ in
W2,0

W1,0
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LOGARITHMIC PREFERENCES

Risk-free rate

πt = e−ρt 1+ξt

δt
, Et

[
−dπt

πt

]
= rt dt

r0 = ρ+µ− (1+ξ0)σ2

For large enough
W2,0
W1,0

, obtain a high market price of risk and a low risk-free rate.

Volatility of stock returns is still equal to the volatility of dividend growth.
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1 EQUILIBRIUM ASSET PRICING WITH COMPLETE MARKETS
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HANSEN, HUANG, KHORRAMI, TOURRE (2018)

Starting Point: Brunnermeier & Sannikov (2016)

Agent Types: “Households” and “Experts”

Technology

,→ A-K production function with ae ≥ ah

,→ TFP shocks (also called “capital quality shocks”)

,→ growth rate and stochastic vol shocks (long-run risk)

,→ idiosyncratic shocks

Markets

,→ Capital traded (with shorting constraint)

,→ Complete financial markets for households

,→ Experts facing “skin-in-the-game” equity issuance constraint

Preferences

,→ Recursive utility

,→ Households and experts potentially different

,→ OLG for technical reasons
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“NESTING” MODEL
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MODELS NESTED

Complete markets with long run risk

,→ Bansal & Yaron (2004)

,→ Hansen, Heaton & Li (2008)

Complete markets with heterogeneous preferences

,→ Longstaff & Wang (2012)

,→ Garleanu & Panageas (2015)

Complete markets for agg. risk with idiosyncratic shocks

,→ Di Tella (2017)

Incomplete market/limited participation models

,→ Basak & Cuoco (1998)

,→ Kogan & Makarov & Uppal (2007)

,→ He & Krishnamurthy (2012)

Incomplete market/capital misallocation models

,→ Brunnermeier & Sannikov (2014, 2016)
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OUTLINE
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CIRCUIT BREAKERS

What is it?

,→ Trading halt following extreme price movements.

,→ Market-wide CBs; CBs for individual stocks.

,→ First advocated by the Brady Commission following the Black Monday of 1987.

Now widely adopted around the world.

Why?

,→ To reduce excess volatility and improve price efficiency?

,→ To restore orderly trading in the market?

,→ To protect investors?

What are the consequences?
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CIRCUIT BREAKERS: U.S. EXPERIENCE

Market-wide CB was triggered only once in the U.S. since 1988.
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CIRCUIT BREAKERS: CHINESE EXPERIENCE

First implemented on Jan 04, 2016, following the market crash in summer 2015.

Abandoned after just 4 days.
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OVERVIEW OF RESULTS

This paper: A neoclassical benchmark to examine how CBs affect trading and
price dynamics.

,→ Abstract away from informational frictions, strategic behavior.

,→ Focus on the basic risk-sharing trading motive.

,→ Dynamic and quantitative effects.

CBs tend to have the following effects:
1 Price level ⇓ (price distortion ⇑)

2 Volatility: daily price range ⇓ conditional & realized vol ⇑
3 “Magnet effect”: increase “hitting probability” relative to complete markets.

4 Stronger effects during earlier part of the trading day

Policy implications

Model is tractable and can be adapted to study dynamic effects of illiquidity in

other settings.
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MODEL SETUP

A continuous-time endowment economy over interval [0,T ].

Aggregate stock: one unit, with terminal dividend DT .

dDt =µDt dt +σDt dZt , D0 = 1

Riskless bond: net supply ∆, pays off 1 at time T .

Two competitive agents: A and B

,→ Endowed with ω and 1−ω shares of the stock and bond.

,→ Log preferences over terminal wealth

ui(W i
T ) = ln(W i

T ), i = {A,B}

No intermediate consumption ⇒ riskless bond as numeraire.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 34 / 62



MODEL SETUP

A continuous-time endowment economy over interval [0,T ].

Aggregate stock: one unit, with terminal dividend DT .

dDt =µDt dt +σDt dZt , D0 = 1

Riskless bond: net supply ∆, pays off 1 at time T .

Two competitive agents: A and B

,→ Endowed with ω and 1−ω shares of the stock and bond.

,→ Log preferences over terminal wealth

ui(W i
T ) = ln(W i

T ), i = {A,B}

No intermediate consumption ⇒ riskless bond as numeraire.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 34 / 62



HETEROGENEOUS BELIEFS

The two agents disagree about the growth rate of dividend.

Agent A has objective beliefs:

µA =µ
Agent B’s belief:

µB
t =µ+δt

,→ Constant disagreement: δt ≡ δ
,→ Extrapolative disagreement: dδt = νdZt

The two agents “agree to disagree.”

Need trading. Heterogeneous risk aversion works similarly.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 35 / 62



HETEROGENEOUS BELIEFS

The two agents disagree about the growth rate of dividend.

Agent A has objective beliefs:

µA =µ
Agent B’s belief:

µB
t =µ+δt

,→ Constant disagreement: δt ≡ δ
,→ Extrapolative disagreement: dδt = νdZt

The two agents “agree to disagree.”

Need trading. Heterogeneous risk aversion works similarly.

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 35 / 62



HETEROGENEOUS BELIEFS

Agent B’s probability measure PB is equivalent to P.

Radon-Nikodym derivative of measure PB with respect to P:

ηt = exp

(
1

σ

∫ t

0
δsdZs − 1

2σ2

∫ t

0
δ2

s ds

)

Intuition: Think of ηt as likelihood ratio.

,→ Agent B will be more optimistic than A when δt > 0. Then, those paths with high

realized values for
∫ t

0 δsZs will be assigned higher probabilities under PB than

under P.
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CIRCUIT BREAKERS

The stock market will be closed until T whenever the price of the stock St falls

below the level (1−α)S0.

τ= inf{t ≥ 0 : St = (1−α)S0}

,→ α: circuit breaker limit, α ∈ [0,1]

,→ S0: initial stock price — endogenous

After stock market closure agents are not able to change their stock postions

Bond market remains open throughout the interval [0,T ].
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EQUILIBRIUM: NO CIRCUIT BREAKERS

Markets are dynamically complete ⇒ solve for equilibrium via the planner’s

problem.

max
Ŵ A

T ,Ŵ B
T

E0
[
λ ln

(
Ŵ A

T

)+ (1−λ)ηT ln
(
Ŵ B

T

)]
subject to resource constraint

Ŵ A
T +Ŵ B

T = DT +∆

Stock price when ∆→ 0: wealth-weighted average of the prices under two

agents’ beliefs

Ŝt =
(
ω̂A

t

ŜA
t

+ ω̂B
t

ŜB
t

)−1

,→ Ŝi
t : price in a single-agent economy with agent i

,→ ω̂i
t : agent i’s wealth share
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EQUILIBRIUM: NO CIRCUIT BREAKERS

Special case: constant disagreement

Ŝt =
(
ω̂A

t

ŜA
t

+ ω̂B
t

ŜB
t

)−1

where

ŜA
t = Dt e(µ−σ2)(T−t)

ŜB
t = Dt e(µ+δ−σ2)(T−t)

Valuation gap: eδ(T−t)
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EQUILIBRIUM: CIRCUIT BREAKERS

Two scenarios:

,→ CB is not triggered between 0 and T ;

,→ CB is triggered at time τ< T .

Markets are still dynamically complete over interval [0,τ∧T ].

Solution strategy:

1 Pin down stopping rule τ consistent with a given stopping price S through

equilibrium conditions upon market closure.

2 Given stopping time τ, solve for equilibrium allocation at τ∧T via planner’s

problem.

3 Compute price at t ≤ τ∧T for given τ and S, St (τ,S).

4 Solve for S through the fixed point problem,

S = (1−α)S0(S)
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EQUILIBRIUM: UPON MARKET CLOSURE

Suppose agent i has wealth W i
τ at time τ≤ T .

Portfolio problem at time τ for competitive agents:

V i(W i
τ,τ) = max

θi
τ,ϕi

τ

Ei
τ

[
ln(θi

τDT +φi
τ)

]
s.t. θi

τSτ+φi
τ = W i

τ

W i
T ≥ 0

V i(W i
τ,τ): indirect utility function for agent i at time τ

Market clearing conditions:

θA
τ +θB

τ = 1 (stock market)

φA
τ +φB

τ =∆ (bond market)
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EQUILIBRIUM (∆→ 0 CASE): UPON MARKET CLOSURE

Market closure ⇒ inability to rebalance between τ and T

,→ Illiquidity + log utility ⇒ no short or levered position at τ

,→ Leverage constraint binds for the optimistic agent

⇒ pessimistic agent becomes the marginal investor.

,→ Assumption ∆→ 0 to be relaxed later.

PROPOSITION

In the limiting case with ∆→ 0, upon market closure at τ< T, both agents will hold all

of their wealth in the stock with no bonds. The market clearing price is

Sτ = min{ŜA
τ , ŜB

τ }

Stopping rule τ is expressed in closed form as a function of state variables.
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CHARACTERIZING THE STOPPING TIME τ

LEMMA

Take the stopping price S as given. Define a stopping time

τ= inf{t ≥ 0 : Dt = D(t,δt ,S)}.

Then the circuit breaker is triggered at time τ when τ≤ T.

We have managed to characterize a stopping time that is based on the

endogenous stock price St as one that is based on the exogenous processes of

Dt and δt .

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 43 / 62



CHARACTERIZING THE STOPPING TIME τ

LEMMA

Take the stopping price S as given. Define a stopping time

τ= inf{t ≥ 0 : Dt = D(t,δt ,S)}.

Then the circuit breaker is triggered at time τ when τ≤ T.

We have managed to characterize a stopping time that is based on the

endogenous stock price St as one that is based on the exogenous processes of

Dt and δt .

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 43 / 62



EQUILIBRIUM: BEFORE MARKET CLOSURE

Solve for optimal allocation at τ∧T through the planner problem, using the

indirect utilities upon market closure:

max
W A
τ∧T ,W B

τ∧T

E0
[
λV A(W A

τ∧T ,τ∧T)+ (1−λ)ηT V B(W B
τ∧T ,τ∧T)

]
subject to

W A
τ∧T +W B

τ∧T = Sτ∧T +∆

The price of the stock at time t ≤ τ∧T :

St = Et

[
πA
τ∧T

πA
t

Sτ∧T

]
= (

ωA
t Et [S−1

τ∧T ]+ωB
t E

B
t [S−1

τ∧T ]
)−1

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 44 / 62



EQUILIBRIUM: BEFORE MARKET CLOSURE

Solve for optimal allocation at τ∧T through the planner problem, using the

indirect utilities upon market closure:

max
W A
τ∧T ,W B

τ∧T

E0
[
λV A(W A

τ∧T ,τ∧T)+ (1−λ)ηT V B(W B
τ∧T ,τ∧T)

]
subject to

W A
τ∧T +W B

τ∧T = Sτ∧T +∆

The price of the stock at time t ≤ τ∧T :

St = Et

[
πA
τ∧T

πA
t

Sτ∧T

]
= (

ωA
t Et [S−1

τ∧T ]+ωB
t E

B
t [S−1

τ∧T ]
)−1

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 44 / 62



EQUILIBRIUM: S

Fixed point problem

S = (1−α)S0(τ(S),S) (∗)

PROPOSITION

There is a unique solution to (∗) for any α ∈ [0,1].
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SPECIAL CASE: CONSTANT DISAGREEMENT

Calibration:

,→ T = 1

,→ µ= 10%/250

,→ σ= 3%

,→ α= 5%

,→ δ=−2% Agent B is pessimistic.

,→ ω= 90% Most wealth initially owned by rational agent.
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PRICE AND AGENT A’S PORTFOLIO HOLDINGS
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CONDITIONAL RETURN VOLATILITY AND RISK PREMIUM

0.9 0.95 1 1.05 1.1

3

4

5

6

Fundamental value: Dt

σ
S,

t
(%

)

t = 0.25

0.9 0.95 1 1.05 1.1
0

0.5

1

1.5

Fundamental value: Dt

µ
A S,

t
(%

)

t = 0.25

Dotted line – complete markets, solid – circuit breakers, horizontal dashed – volatility ratio in

a representative-agent economy

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 48 / 62



STRONGER EFFECTS EARLIER DURING TRADING SESSION
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CIRCUIT BREAKER VS. PRE-SCHEDULED TRADING HALT

0.9 0.95 1 1.05 1.1

0.985

0.99

0.995

1

S t
/D

t

t = 0.25

0.9 0.95 1 1.05 1.1

3

4

5

6

σ
S,

t
(%

)

t = 0.25

0.9 0.95 1 1.05 1.1
0

2

4

6

θ
A t

t = 0.25

0.9 0.95 1 1.05 1.1

0.985

0.99

0.995

1

Fundamental value: Dt

S t
/D

t

t = 0.5

0.9 0.95 1 1.05 1.1

3

4

5

6

Fundamental value: Dt

σ
S,

t
(%

)
t = 0.5

0.9 0.95 1 1.05 1.1
0

2

4

6

Fundamental value: Dt
θ

A t

t = 0.5

© HUI CHEN (MIT SLOAN) SAIF SUMMER CAMP SAIF SUMMER CAMP 2018 50 / 62



STOCHASTIC DISAGREEMENTS

Assume δt follows a random walk:

dδt = νdZt

δ0 = 0: Agent B initially (and on average) has no biased beliefs.

Interpretation:

,→ “Representativeness” bias in behavioral finance.

,→ Investors facing leverage/risk constraint: effectively more (less) pessimistic or risk

averse as the constraint tightens (loosens).

Calibration:

,→ T = 1

,→ µ= 10%/250

,→ σ= 3%

,→ α= 5%

,→ δ=−2% ⇒ ν=σ
,→ ω= 90%
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CB DAMPEN PRICES AND AMPLIFY VOLATILITY
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THE “MAGNET EFFECT”
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VOLATILITY AMPLIFICATION AND CB LIMIT α
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WELFARE

Two ways to think about welfare in this model.

Compute welfare under agents’ respective beliefs

,→ CBs reduce welfare

Paternalistic view: Compute welfare under objective probability measure.

,→ CBs can increase welfare
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WELFARE LOSS AS A FUNCTION OF RATIONAL AGENT

INITIAL SHARE OF WEALTH
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Welfare loss is relative to the complete markets case.
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WELFARE LOSS: PATERNALISTIC VIEW
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ω – initial wealth share of agent A

Welfare loss is relative to both agents having objective beliefs.
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POSITIVE BOND SUPPLY

With positive bond supply, it is possible that optimistic agent can hold the

entire stock market at market closure.

Could change which constraint (leverage or short-selling) becomes binding at

market closing.

If short-selling constraint binds, relative optimist becomes marginal ⇒ Price

level ⇑, volatility ⇓

Depends on total bond supply + initial wealth distribution.
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INTUITION: PRICE UPON MARKET CLOSURE
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REALIZED VOLATILITY WITH ∆> 0
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ROBUSTNESS AND EXTENSIONS

Bounded shocks (discrete time)

,→ No need to completely delever/close short positions.

,→ Equilibrium can “flip” like with positive bond supply.

Upside vs. downside CBs

CBs based other variables: volatility, volume

Multiple-tiered CBs
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CONCLUSION

A competitive benchmark to study the dynamic effects of CBs.

CBs tend to have the following effects:

,→ Lower the price-dividend ratio (increase price distortion)

,→ Daily price range ⇓, conditional and realized volatility ⇑
,→ Magnet Effect: raise probability of the stock price to reach the threshold limit

Main mechanism applies to other forms of disappearing liquidity: price limits,

short-sale ban, trading frequency restrictions, sudden price jumps

Policy implications:

,→ “Reduce volatility”: Which volatility?

,→ Lucas critique: Danger of using historical data to estimate the likelihood of CB

trigger after implementation.
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