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gorithm, it pools the strengths from the equi-energy and sequential Monte Carlo samplers

while avoiding the weaknesses of the standard Metropolis-Hastings algorithm and those of

importance sampling. In particular, the DSMH sampler possesses the capacity to cope

with extremely irregular distributions that contain winding ridges and multiple peaks; and

it is robust to how the sampling procedure progresses across stages. The high-dimensional

application studied in this paper provides a natural platform for testing any generic sampler.
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I. Introduction

We develop a new posterior simulation method that allows researchers to estimate high-

dimensional economic and statistical models that have irregular likelihoods with multiple

peaks and complicated winding ridges. We undertake this research mainly because, in recent

years, the Bayesian estimation and evaluation of multivariate dynamic models have played

a central role in assessing how well the model fits to the data and in selecting the best-fit

model for forecasting and for policy analysis (Geweke, 1999; Christiano, Eichenbaum, and

Evans, 1999, 2005; An and Schorfheide, 2007; Smets and Wouters, 2007).

Standard Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings

algorithm, work well for estimating models with likelihoods or posterior distributions that

have smooth Gaussian shapes. For high-dimensional economic and statistical models, how-

ever, the likelihood or the posterior distribution can be non-Gaussian with highly irregular

shapes and multiple peaks. These problems can severely compromise the accuracy of previ-

ous MCMC samplers for Bayesian inference.

To tackle such problems we develop a new posterior simulation method, called the dy-

namic striated Metropolis-Hastings (DSMH) sampler. It draws the strengths of two recently

developed samplers: the equi-energy (EE) algorithm (Kou, Zhou, and Wong, 2006) and

the sequential Monte Carlo (SMC) algorithm (Chopin, 2004; Durham and Geweke, 2012;

Herbst and Schorfheide, 2014). The basic idea behind these two techniques is to start with

a tractable initial distribution one can sample from and then to transform this initial distri-

bution gradually to the desired posterior distribution through a sequence of stages. At each

stage the sample from the previous stage is used to form a new sample for the current stage.

The sample gathered at the final stage is the same as the sample generated from the desired

posterior distribution. The key difference between these techniques are how information

from the previous stage is transmitted to the current stage; the sampling quality depends

crucially on this detail.

By pooling the strengths of these two samplers, our newly developed simulation method—

the DSMH sampler—makes a significant contribution to the literature in several dimensions.

First, it improves the EE sampler by adapting the procedure of sampling the target dis-

tribution at each stage when the sampler progresses from the previous stage to the next.

This dynamic adjustment marks a major departure from the EE sampler and plays an in-

dispensable role in the DSMH sampler. In theory we show that convergence holds for our

dynamically adjusted sampler. In practice this dynamic feature holds the key to the DSMH

sampler for avoid getting stuck in a local parameter region with highly correlated draws.

Consequently the DSMH sampler is capable of exploring the entire posterior distribution.
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Second, like the SMC sampler, the DSMH sampler takes advantage of parallel computing

and approximates marginal data densities or marginal likelihoods as a by-product. The SMC

sampler relies on importance sampling to reweight the sample of random draws (particles) at

each stage. The problem inherent in importance sampling is that particles tend to collapse

so that only a small fraction of the sample receives most weights. The remedy, called “the

mutation step,” is to use the Metropolis-Hastings algorithm to resample new particles when

the importance sampler begins to collapse. By contrast, because the DSMH sampler is

grounded in the Metropolis-Hastings algorithm and utilizes importance weights only for an

initial draw at each stage, it does not suffer the degeneracy problem inherent in the SMC

sampling. The adaption to maintain a sufficient number of draws at each stage enables the

DSMH sampler to traverse the entire parameter space efficiently.

Third, we apply the DSMH sampler to structural vector autoregressions (SVAR) models.

This application is relevant and important for several reasons. Many multivariate dynamic

models such as dynamic stochastic general equilibrium (DSGE) models are closely con-

nected to SVAR models (Ingram and Whiteman, 1994; Del Negro and Schorfheide, 2004).

Understanding how the DSMH sampler works for SVAR models provides a first step toward

extending application to other multivariate dynamic models. We show that an exact Gibbs

sampler exists at every stage of our sampler. This powerful result allows us to obtain accurate

posterior draws from the Gibbs sampler at each stage and compare this “true” distribution

to the distribution simulated from the DSMH sampler. Moreover, since configuration of

the tuning parameters is an important part of the DSMH sampler (as in any Monte Carlo

simulation technique), the parameter values that work for our SVAR application serve as an

informative benchmark for other applications in which an exact Gibbs sampler is no longer

available.

It is known that the posterior distributions for reduced-form VAR models or SVAR models

with recursive identification are well behaved. Thus, a successful application of the DSMH

sampler to these models does not necessarily mean that the sampler is capable of exploring

irregular high-dimensional distribution. To challenge our sampler as well as other relevant

samplers, we use three-variable SVAR models with non-recursive identification as in Sims

and Zha (2006). Moreover, we choose to work on the unnormalized SVAR model so as

to make the posterior distribution populated with at least as many as 2n isolated peaks,

where n is the number of equations. This combination of non-recursive identification and

un-normalization makes the posterior distribution incredibly complex, full of complicated

ridges between peaks.

The importance of using this SVAR cannot be overestimated. As SVAR models are often

used as a benchmark for a host of economic models (Christiano, Eichenbaum, and Evans,

2005), our model in this paper, a much smaller and simpler version of Sims and Zha (2006)’s
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model, represents the complexity that would be encountered by many other economic models.

There are several advantages for using such a model as a platform to test generic samplers:

• The three variables in our model are most commonly used in macroeconomics: output

gap, inflation, and the interest rate.

• Therefore, it is not an artificial model but rather an empirical model that is used for

practical policy analysis and has become a workhorse for modern macroeconomics.

• The model is realistically high-dimensional in the sense that the curse of dimension-

ality is not too overwhelming to render infeasible the task of testing the quality of a

generic sampler.

• Unlike many other economic models, the model has the posterior distribution that

can be simulated independently and thus enables researchers to perform accuracy

comparison across competing generic samplers.

In summary, the model’s posterior distribution serves as a fair but serious platform for

testing any generic Monte Carlo sampler. We apply the four generic Monte Carlo samplers

to this testing model: the widely used standard random-walk Metropolis sampler, the EE

sampler, the SMC sampler, and the DSMH sampler. By generating independent draws from

the Gibbs sampler, we are able to evaluate and compare how well each of these samplers

works against the underlying distribution. We find that the DSMH sampler outperforms the

other three samplers.1

The rest of the paper is organized as follows. Section II develops the DSMH sampler

with theoretical justifications. Section III addresses a number of practical issues that are

relevant to the end user. Section IV discusses two major difficulties that lie at the heart

of estimation of multivariate dynamic models. Section V presents two challenging SVAR

models that put the generic DSMH sampler to the test. Both models have highly irregular

posterior distributions. SectionVI offers concluding remarks.

II. The Dynamic Striated Metropolis-Hastings Sampler

In this section we give a detailed description of the DSMH sampler and discuss a gen-

eral condition under which convergence holds. Because the DSMH sampler combines the

strengths of both the EE and SMC samplers, we contrast it with each of these other sam-

plers throughout the section to facilitate an understanding of our new sampler. The detailed

pseudo-code for our newly developed DSMH sampler is provided in Appendix A.

II.1. The Generic Algorithm. Let YT = (y1, . . . , yT ) denote the observable variables,

where T is the total number of observations and yt denotes an n × 1 vector of variables

1This finding by no means implies that the DSMH sampler is always superior; rather, it shows the power

of the DSMH sampler and presents a challenging criterion for other samplers to meet.
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observed at time t. The likelihood function is denoted by p(YT |θ), where θ ⊂ Θ ⊂ Rm is

a vector of parameters. Combining the likelihood and the prior probability density π(θ),

we obtain the posterior kernel p(YT |θ)π(θ).2 The DSMH sampler proceeds through a series

of stages, each associated with a target probability distribution on Θ. The initial stage’s

target distribution must be tractable, i.e. one must be able to sample independently from

the distribution and be able to compute its probability density, not just its kernel. The final

stage’s distribution must be the posterior probability distribution. In practice, we follow

Herbst and Schorfheide (2014) and Bognanni and Herbst (2014) and use the prior density

function π(θ) as an initial distribution. The initial distribution is then gradually transformed

until, at the final stage, the target is the posterior distribution.3 At each stage one obtains

a sample from the target distribution using the sample obtained from the previous stage.

In theory the sample at the final stage is from the posterior distribution; in practice the

DSMH sampler is designed to ensure that the sample is representative, even for complicated

posterior distributions in high-dimensional spaces.

II.1.1. Stages. We transform the posterior distribution by tempering the likelihood. For any

real number λ satisfying 0 ≤ λ ≤ 1, define a tempered posterior kernel as

fλ(θ) = p(YT |θ)λ π(θ).

To simplify notation, we omit YT as an argument in fλ(θ) with the understanding that fλ(θ)

depends on the data YT . The value λ controls the degree of tempering.4 When λ = 1, f1(θ)

is the posterior kernel; when λ = 0, f0(θ) is the prior density.

To define stages we choose λi, for 0 ≤ i ≤ H, such that 0 = λ0 < λ1 < · · · < λH−1 <

λH = 1. For 0 ≤ i ≤ H, the target distribution for the ith stage is fλi(θ), which we use to

denote both the probability kernel and the actual distribution itself. Note that the initial

target distribution fλ0 is the prior distribution and the final target distribution fλH (θ) is the

posterior kernel. Recommendations for how to choose λi are given in Section III.2.

2A probability kernel is non-negative and integrates to a finite positive number that may not be one, while

a probability density is non-negative and integrates to exactly one.
3Although the basic idea is the same for the DSMH, EE, and SMC samplers, how this idea is implemented

differs substantially across these samplers. Even within the SMC sampler, for instance, the implementation

differs considerably between the method of Durham and Geweke (2012) and that of Herbst and Schorfheide

(2014). Other adaptive samplers such as those proposed by Bauwens, Bos, van Dijk, and van Oest (2004)

and Hoogerheide, Opschoor, and van Dijk (2012) have succeeded in sampling lower-dimensional irregular

distribution and may, after suitable modifications, weather the challenge of our high-dimensional irregular

distribution. While it is simply infeasible to compare all generic samplers in one paper, our high-dimensional

model serves as an important benchmark for testing various other generic samplers.
4The EE literature refers to 1/λ as temperature and uses it to measure the degree of tempering. We

prefer λ since it is this term that directly appears in all formulae.
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For each stage i we obtain a sample from fλi(θ), which we denote by
{
θ(i,`)

}NG
`=1

, where

NG is the total number of simulations. The sample
{
θ(0,`)

}NG
`=1

consists of independent

random draws from the prior distribution and the sample
{
θ(H,`)

}NG
`=1

comes from the posterior

distribution. In general, the sample
{
θ(i,`)

}NG
`=1

depends on the sample
{
θ(i−1,`)

}NG
`=1

. This

dependence allows the DSMH sampler to take full advantage of the sample at previous

stages and the nature of this dependence marks a major departure from the SMC sampler

as discussed in the following two sections.

To see the effections of tempering, consider a simple one-dimensional example in which

ayt = εt, where εt is a standard normal random variable and a is the parameter under

consideration. The tempered likelihood is proportional to

|a|λT e−
1
2
λT σ̄2a2 ,

where σ̄2 =
∑T

t=1 y
2
t /T . Figure 1 plots tempered likelihoods of a for λ varying from 0.005

to 1.0 with T = 20 and σ̄ = 1.5 This simple example embodies the two essential features of

tempering. First, the most tempered likelihood is very flat (the thick solid line in the figure).

In fact, as λ tends to zero, the tempered likelihood tends to one on the space in which the

likelihood is finite and positive, so that the most tempered posterior kernel is close to the

prior of a. Second, as λ tends to one, the tempered likelihoods gradually converge to the

likelihood itself (the thick dashed line in the figure) and the peaks of the likelihood function

grow from the much flatter peaks of the tempered likelihood functions.

II.1.2. Striations. Most of the time the DSMH sampler at the ith stage functions as the

standard random-walk Metropolis algorithm with the target distribution fλi(θ). But occa-

sionally a proposal draw comes from the sample at the previous stage. Random draws are

accepted or rejected with an appropriate Metropolis-Hastings acceptance criterion. How to

simulate random draws from the previous stage is crucial to the efficiency of the sampler.

When simulating from the tempered distribution at the previous stage, we would like those

draws to be similar to the current draw in terms of the level (height) of the likelihood. As

a result, those draws from the previous stage are likely to be accepted, and because they

are simulated independently, the sampler moves efficiently among the values of θ that have

similar likelihood values. On the other hand, the random-walk Metropolis component of

the sampler allows movements among the values of θ that have significantly different like-

lihood values or levels. Put differently, proposal draws from the tempered distribution at

the previous stage move independently within the same level set while serially-correlated

random-walk Metropolis proposal draws move between level sets.

5These kernels are unnormalized and thus have multiple peaks. We use unnormalized likelihoods to

illustrate how the sampler handles irregular posterior kernels.
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We call a “striation” the set of all values of θ that have similar likelihood values. Striations

at the ith stage are defined by a sequence of M + 1 levels, denoted by Li,k, satisfying 0 =

Li,0 < Li,1 < · · · < Li,M−1 < Li,M =∞. For 1 ≤ k ≤M , the kth striation is the set

Si,k = {θ ∈ Θ | Li,k−1 ≤ p(YT |θ) < Li,k}. (1)

We choose the levels so that the probability that θ ∈ Si,k is equal to 1/M . This probability

is with respect to the distribution at the previous stage. If

Ii−1 =

∫
θ∈Θ

fλi−1
(θ)dθ, (2)

the levels are chosen to satisfy

1

M
=

∫
θ∈Si,k

fλi−1
(θ)

Ii−1

dθ.

It is generally impossible to find analytic expressions for setting the levels. One can, however,

use the sample from the previous stage to set the levels by simply choosing Li,k so that an

equal number of draws lie in each striation. We find that this simple rule works well in

practice for determining the levels.6 There are tradeoffs in determining the number of levels.

On the one hand, one would like to have striations as small as possible to allow the random-

walk Metropolis algorithm to move between striations more efficiently. This argues for a

larger M . On the other hand, we need the sample in each striation to be representative,

which argues for a smaller M . The value of M should be set so that each striation contains

a few thousand draws. In all of our examples, we set M to 50, so that the number of draws

per striation was NG/M = 4, 000.

In general, the levels chosen at stage i − 1 differ from those chosen at stage i. This is

what we mean by dynamically adjusting striations; it marks an important departure from

the EE sampler developed by Kou, Zhou, and Wong (2006). In that setup, the levels are

the same for all stages so that Li,k = Lk for all i and they suggest a geometric progression

so that Lk+1 = γLk with γ > 1 being a key tuning parameter. In addition, γLM−1 is set

to supθ{p(YT )|θ)π(θ)}, so that the sequence is completely determined by γ with no room

for flexibility. By allowing levels to differ across stages, our approach has two substantive

advantages. First, it is unnecessary to maximize the posterior density function (i.e., find

supθ{p(Yt|θ)π(θ)}), which is a hard problem in and of itself for many high-dimensional

economic problems. Indeed, optimization proceeds best if one can sample first and then

use sampled draws as starting points for the maximization routine. Second, because the

striations are fixed by the EE sampler, we find that most of the striations contain no draws

in the later stages of the sampler. This phenomenon would be reflected in the sampled

6In principle one could also allow an unequal number of draws to lie in each striation as long as there are

enough draws in each striation.
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posterior distribution that tends to be too concentrated. Such a result negates one of the

main advantages of utilizing striations. Indeed, the term “dynamic” in DSHM refers to the

important fact that levels are adapted to contain a sufficient probability in each striation

when the sampler progresses from stage to stage. Such a dynamic adjustment is critical

because it ensures that each striation remains fully populated so that all the information in

the previous sample is efficiently exploited.

II.1.3. Metropolis-Hastings. We now turn to the details of the Metropolis-Hastings proposal

distribution. The proposal distribution is a mixture of a Gaussian distribution and the

distribution fλi−1
(θ) at the previous stage. If θ∗ ≡ θ(i,`) is the most recent draw from the

DSMH sampler at the ith stage, the proposal density of θ given θ∗ is

gi(θ, θ
∗) = (1− p)φciΩi (θ − θ∗) + pχ(θ, θ∗)

Mfλi−1
(θ)

Ii−1

,

where φciΩi(·) is the mean-zero Gaussian probability density with variance ciΩi and χ(θ, θ∗)

is the indicator function that returns one if θ and θ∗ are in the same striation and zero

otherwise.7 The mixture form of gi(θ, θ
∗) dictates that with probability 1 − p, θ is drawn

from the Gaussian distribution centered at θ∗ and with probability p, θ is drawn from the

distribution at the previous stage but from the same striation that contains θ∗. Draws from

the previous stage that lie in a particular striation can be easily obtained by selecting, with

equal probability, any of the previously obtained draws
{
θ(i−1,`)

}NG
`=1

that lie in that striation.

Kou, Zhou, and Wong (2006) propose an acceptance rule slightly different from the stan-

dard Metropolis-Hastings acceptance rule and apply it to the proposal density g(θ, θ∗). Let

θ be a random draw from the proposal distribution. When θ is sampled from the Gaussian

distribution, it is accepted with probability

min

{
1,
fλi (θ)

fλi (θ∗)

}
; (3)

when θ is sampled from the distribution at the previous stage, it is accepted with probability

min

{
1,
fλi (θ)

fλi (θ∗)

fλi−1
(θ∗)

fλi−1
(θ)

}
. (4)

If the draw is accepted, then θ(i,`+1) = θ and if rejected, then θ(i,`+1) = θ∗. Kou, Zhou, and

Wong (2006) show that the distribution sampled this way converges to the target distribution

at each stage.

One could instead use the standard Metropolis-Hastings acceptance rule under which a

draw θ from the proposal distribution is accepted with probability

min

{
1,
fλi (θ)

fλi (θ∗)

gi (θ
∗, θ)

gi (θ, θ∗)

}
. (5)

7Details for the choice of Ωi are given in Section III.1, ci in Appendix B, and p in Section III.3.
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If the draw is accepted, θ(i,`+1) = θ; if rejected, θ(i,`+1) = θ∗. Because the integral Ii−1 can

easily be computed as the DSMH sampler proceeds,8 the proposal density ratio gi(θ
∗,θ)

gi(θ,θ∗)
is

readily available.

The above two acceptance rules are not very different in practice for the following reason.

When θ and θ∗ are close to each other, which is more likely when the draw comes from the

Gaussian, φciΩi (θ − θ∗) is much larger than either fλi−1
(θ) or fλi−1

(θ∗). When θ and θ∗ are

far apart from each other, which is more likely when the draw comes from the previous stage,

both fλi−1
(θ) and fλi−1

(θ∗) are much larger than φcΩi (θ − θ∗). Thus, when θ is sampled from

the Gaussian distribution, gi(θ
∗, θ)/gi(θ, θ

∗) ≈ 1; when θ is sampled from the previous stage’s

distribution, gi(θ
∗, θ)/gi(θ, θ

∗) ≈ fλi−1
(θ∗)/fλi−1

(θ). We prefer the alternative acceptance rule

suggested by Kou, Zhou, and Wong (2006) because it enables the DSMH sampler to remain

efficient even in situations where Ii−1 may not be well estimated. This is one of the key

features that make the DSMH sampler attractive and is highlighted by the application in

Section V.3.

II.2. Theoretical Foundation. In this section we give a proof of the DSMH sampler’s

convergence under a very general condition.

Condition 1. The prior π(θ) is proper, so that
∫
θ∈Θ

π(θ)dθ = 1, and there exist algorithms

for obtaining draws from this density.

Condition 1 is extremely general and almost all parametric models, economic and statis-

tical, would meet this condition. It is certainly much less restrictive than those in the SMC

literature as it does not impose uniform boundedness on the posterior probability density.

Condition 1 is all we need for convergence of the DSHM sampler. To prove the convergence,

we show that fλ is a probability kernel and the sampler converges to fλ.

Proposition 1. Under Condition 1,
∫
θ∈Θ

fλ(θ)dθ <∞ for 0 ≤ λ ≤ 1 and almost all YT .

Proof. Condition 1 and Tonelli’s Theorem imply that
∫
θ∈Θ

p(YT |θ)π(θ)dθ <∞ for almost all

YT . Let A = {θ ∈ Θ|p(YT |θ) < 1} and B = {θ ∈ Θ|p(YT |θ) ≥ 1}. For 0 ≤ λ ≤ 1,∫
θ∈Θ

p(YT |θ)λπ(θ)dθ =

∫
θ∈A

p(YT |θ)λπ(θ)dθ +

∫
θ∈B

p(YT |θ)λπ(θ)dθ

≤
∫
θ∈A

π(θ)dθ +

∫
θ∈B

p(YT |θ)π(θ)dθ.

Since integrals of both π(θ) and p(YT |θ)π(θ) are almost surely finite, the integral of p(YT |θ)λπ(θ)

is also almost surely finite. So, under Condition 1, fλ(θ) is a probability kernel. �

8In Section III we discuss techniques for estimating this quantity, which is of independent interest.
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Armed with Proposition 1, the following proposition shows that Condition 1 is sufficient to

ensure convergence of the DSHM sampler. By “convergence” we mean that the random se-

quence {θ(i,`)} is ergodic and the limiting distribution exists. Of course this random sequence

depends on the previous random sequences {θ(k,`)} for 0 ≤ k < i. To obtain convergence

of the ith sequence, the length of the ith sequence, as well as the lengths of all previous

sequences, must increase, although the increase needs not be at the same rate.

Proposition 2. Under Condition 1, the DSMH sampler at the ith stage converges to fλi(θ).

In particular, at the final stage, the DSMH sampler converges to the posterior distribution.

Proof. Theorem 2 of Kou, Zhou, and Wong (2006) assumes that the strations do not vary

across stages. For the DSMH sampler, not only do the striations vary across stages, they also

depend on the previous stage’s sample. However, their proof of Theorem 2 will go through

as long as the boundaries of the striations for the ith stage, Li,j({θ(i−1,`)}NG`=1), converge as

NG increases, which is true for the DSMH sampler. Thus Theorem 2 of Kou, Zhou, and

Wong (2006) applies and gives sufficient conditions for the convergence when the acceptance

rule is given by (3) and (4). In particular, the DSMH sampler at the ith stage converges to

fλi(θ) provided that (1) it does so at the 0th stage; (2) the Metropolis transition probabilities

for jumping between adjacent striations is positive; (3) the probability that θ drawn from

the target distribution for the ith stage is in the jth striation is positive for all stages and

striations. By Condition 1, there exists a sampler for obtaining draws from the prior, so (1)

holds. Because our Metropolis jumping kernel is Gaussian and the measure of any striation

is positive, the Metropolis transition probability for jumping between any two striations is

positive so that (2) holds. By construction, the probability that θ drawn from the target

distribution for the ith stage is in the jth striation is approximately 1/M , so that (3) holds.

Thus the DSMH sampler converges at each stage.

If the acceptance rule is given by (5), then the usual theorems governing the convergence of

the Metropolis-Hasting algorithm apply. In particular, if the Metropolis-Hastings transition

kernel, given by gi(θ, θ
∗), is aperiodic and irreducible with respect to fλi(θ), then an induction

argument similar to the one used in the proof of Theorem 2 of Kou, Zhou, and Wong (2006)

implies that the DSHM draws at the ith stage converge to the distribution fλi(θ). See Tierney

(1994), Theorem 1, for a discussion of these concepts and this result. Because the support of

our proposal distribution is all of Rm, the transition kernel is aperiodic. Because a subset of

Rm is of positive probability with respect to fλi(θ) if and only if it is of positive probability

with respect to fλi−1
(θ), the transition kernel is irreducible with respect to fλi . Thus the

sampler converges. �

Propositions 1 and 2 establish the theoretical foundation of the DSMH sampler.
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III. Practical Issues

In this section we discuss the tuning parameters that the end user can set and other

tuning decisions that are made automatically by our implementation. Table 1 provides an

overview of the tuning parameters available to the end user, the recommended settings, and

the speed-reliability tradeoffs. The following sections give detailed discussions, all of which

are relevant to Table 1.

III.1. Importance Weights. To make the DSMH sampler operational, we must generate

a starting value for each group and define ciΩi, the variance of the Gaussian distribution for

the random-walk Metropolis proposal density. The scale ci is determined by the standard

Metropolis tuning procedure. This procedure is described in Appendix B. The importance-

weighted draws from the previous stage are utilized to generate the starting values and

determine Ωi.

The unnormalized importance weight of θ(i−1,`) is w̃
(i)
` = fλi(θ

(i−1,`))/fλi−1
(θ(i−1,`)) and the

normalized importance weight is w
(i)
` = w̃

(i)
` /(

∑NG
k=1 w̃

(i)
k ). Resampling from {θ(i−1,`)}NG`=1 using

the normalized importance weights as probabilities delivers a sample from the distribution

fλi(θ). Resampling produces a representative sample from the distribution fλi(θ) if the

weights are balanced; otherwise, the sample is unlikely to be reliable.

We take Ωi to be the importance-weighted estimate of the variance of fλi(θ), which is

given by

Ωi =
NG∑
`=1

w
(i)
` (θ(i−1,`))(θ(i−1,`))′ − µiµ′i, where µi =

NG∑
`=1

w
(i)
` θ

(i−1,`).

The starting value for each group is an independent draw from an importance-weighted

sample of
{
θ(i−1,`)

}NG
`=1

.

The effective sample size (ESS) based on importance weights is useful in determining when

the weights have become unbalanced. It is defined as

ESS(i, IW) =

(∑NG
`=1 w̃

(i)
`

)2

∑NG
`=1

(
w̃

(i)
`

)2 =
1∑NG

`=1

(
w

(i)
`

)2 ,

where the superscript “IW” stands for importance weights. This value is between 1 and NG,

with a larger number indicating that weights are better balanced. Importance weighting

forms the basis for SMC samplers and effective sample size is its main diagnostic tool. The

idea is that one starts with an independent sample from fλ0(θ). At each stage the sample

is reweighted using the importance weights and the effective sample size is computed. The

effective sample size decreases with each successive stage and would quickly collapse to 1 for

most high-dimensional dynamic models. When the effective sample size relative to the total

number of draws drops below a certain threshold, one resamples from the distribution using
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the importance weights. For instance, Herbst and Schorfheide (2014) recommend resampling

when the effective sample size relative to the total number of draws drops below 50%. After

resampling, however, many draws appear multiple times. For this reason, random-walk

Metropolis draws are made for each resampled draw. This last step is often described as

mutation and the SMC algorithm as the reweighting-resampling-mutating procedure. From

this description one can see the central role importance sampling plays in the SMC algorithm.

By contrast, the DSMH sampler is grounded in the Metropolis-Hastings algorithm. Im-

portance sampling is only used to obtain a small number of initial draws at each stage and for

computing Ωi. For this reason, DSMH is less adversely effected as the the importance weights

become unbalanced. At each stage and within each striation, the previous stage’s draws are

independently sampled without reweighting and then accepted or rejected according to the

aforementioned acceptance rule.

III.2. Choosing λi. We find that the DSMH is fairly robust to the choice of λi. Kou, Zhou,

and Wong (2006) recommend a geometric progression for the λi,

λi = λ
H−i
H−1

1 .

Given H, the only parameter to set is λ1, the smallest non-zero λi. To answer the question

of how small λ1 should be chosen, consider a model of the form gt(yt, θ) = εt, a common

form for dynamic multivariate models, where εt is an n× 1 vector of exogenous shocks and

yt is an n× 1 vector of observables for 1 ≤ t ≤ T . If the probability density of εt is pε(εt, θ),

the likelihood function can be expressed as

T∏
t=1

∣∣∣∣det

[
∂gt
∂yt

]∣∣∣∣ pε(gt(yt), θ).
Whatever complexity the possibly nonlinear function gt(yt, θ) might bring to our problem,

the product of determinants adds another dimension of complexity: a high-order polynomial

of degree nT . As illustrated in Figure 1, the most tempered likelihood function should be

a diffuse mound-shaped distribution; to achieve this objective, λ1 needs be small enough to

wash away the effects of the high-order polynomial. For this reason, λ1 should be at most

1/(nT ) and we recommend that it be set to 1/(10nT ).

One could choose different functional forms for λi. For instance, Herbst and Schorfheide

(2014) recommend a power function of the form

λi =

(
i− 1

H − 1

)γ
,

with γ equal to 2 for their SMC sampler. Herbst and Schorfheide (2014) call the choice of

λi “the tempering schedule.” Both as a robustness check and to facilitate comparison with

their sampler, we also report results from this tempering schedule.



DYNAMIC STRIATED METROPOLIS-HASTINGS SAMPLER 12

Although not articulated in Kou, Zhou, and Wong (2006), the distance between λi−1 and

λi is connected to the effective sample size at each stage. To see this important point, note

that

ESS(i, IW) =

(∑i,NG
`=1 p

(
YT | θ(i−1,`)

)λi−λi−1
)2

∑NG
`=1 p (YT | θ(i−1,`))

2(λi−λi−1)
.

One can see that that as λi monotonically decreases to λi−1, ESS(IW) monotonically increases

to NG. Thus the effective sample size relative to the number of draws is an easily computed

and interpreted indicator of how close the distribution fλi−1
(θ) is to the distribution fλi(θ).

While the DSMH sampler is not as sensitive to a sharp decrease of the effective sample size

as the SMC sampler, the two distributions fλi−1
(θ) and fλi(θ) should not be too far apart.

For this reason, we always recommend to compute the effective sample size relative to the

total number of draws. If it gets too small (less than 10% for example), one might need to

increase the number of stages or change the value of λ1 or perform both. In our application,

we have not found the need for such an adjustment.

III.3. Thinning and Probability of Striated Proposal. The standard Metropolis-Hastings

algorithm produces serially correlated draws, especially for high-dimensional problems. For

the DSMH sampler, while acceptance of a proposal draw from the sample obtained at the

previous stage breaks this dependence, one could still have a long sequence of serially corre-

lated draws, particularly if the probability of making a striated proposal is small. For this

reason, we recommend that one posterior draw be saved for every T posterior draws made

at each stage. We call T “the thinning factor.” To save NG draws, therefore, one must

simulate approximately T NG posterior draws. Thus, the thinning factor directly effects the

run time of the DSMH algorithm. Double the thinning factor will approximately double the

run time of the algorithm. The thinning factor T is chosen by the user, but we recommend

that T be set to 50. This value works well for the examples considered in this paper, which

are representative of many dynamic macroeconomic models. One can always compute the

serial correlation of adjacent saved draws to gauge whether this value is too high or too low.

The probability of making a striated proposal draws, p, is related to T in two ways. The

random-walk Metropolis algorithm needs time to explore the distribution locally before a

striated proposal draw is accepted and the sampler moves to another region of the parameter

space. Since we save only a portion of these draws, it must be that p < 1/T . And since

striated proposal draws come from the sample obtained at the previous stage, we need to

avoid over-sampling from the previous tempered distribution. If we set p = 0.1/T , the

number of striated proposals is equal to 10% of the total number of draws simulated at

the previous stage. Heuristically this value is reasonable enough to safeguard against over-

sampling.
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III.4. Parallelism. In this section we discuss how parallelism is used for the DSMH sampler

and how it is related to the other literature.

III.4.1. Central Processing Units. Central processing units (CPUs) have been traditionally

used for scientific computing. Most computers have multiple cores, each of which is essentially

an independent processing unit.9 Inexpensive desktops often have 4 or 8 cores, and high-end

workstations could easily have 24 or 32 cores. High-performance cluster machines often have

cores numbering in the hundreds.

To effectively use the multiple-core CPU technology, it is best to divide the algorithm

into computational blocks so that each block requires no interaction with other blocks. The

DSMH sampler is designed to utilize parallelism efficiently through such blocks, which we call

“groups.” Within each stage, we have G independent groups and simulate N draws for each

group. While each group uses the same set of draws from the previous stage, the computation

within each group is completely independent of the other groups at the same stage. If each

group ran on its own core, then all G groups would finish the stage in approximately the

same amount of time as a single group would take to finish on a single core unit. We expect

a G-fold improvement by using G cores. Because there is overhead computing time between

stages, such as consolidating the draws from each group and sorting them into striations,

the improvement is not exactly G-fold but close to it. Some of the between-stage overhead

computation could be parallelized, but we have chosen not to do so because the efficiency

gain is relatively small.

Because we recommend adjusting N so that the total number of draws remains the same,

the difference between a single group and multiple groups is simply the number of starting

values used. Starting values for each group are chosen from the importance-weighted sample

at the previous stage. For this reason, we recommend that G be set to the number of cores

available. To avoid oversampling at the previous stage, N should be at least 100 so that no

more than 1% of the draws from the previous stage are used as starting values. If one runs

the DSMH algorithm on an inexpensive desktop computer, where there may be only 4 or 8

cores, we recommend that G be set to a multiple of the number of cores available and at

least 20 to mitigate the effects of an unfortunate draw of the starting value that may be in a

low-probability region of the parameter space. At each stage a total of NG draws are stored

9While it is useful to think of each core as a completely independent processing unit, there are usually

shared resources. For instance, multiple cores on the same chip must allocate the memory each core needs

from a common pool. Hyperthreading is a technology that allows two cores to share computing resources

in addition to the common pool of memory. In theory, if an algorithm is able to fully utilize multiple cores,

doubling the number of cores available would halve the run time of the program. In practice, the shared

resources reduce the efficiency gain slightly.
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for use in the next stage. Because it is the total number of draws that matters, G is tailored

to the computing environment while N is adjusted to target NG at the desired level.

III.4.2. Graphical Processing Units. The use of graphical processing units (GPUs) is in-

creasing as their price comes down. Moreover, tools for programming GPU applications

have become more sophisticated so that it is much easier to compile the existing C, C++,

or FORTRAN code on the GPUs. For instance, see Aldrich, Fernández-Villaverde, Gallant,

and Rubio-Ramı́rez (2011) and Durham and Geweke (2012) for examples of how GPUs can

be exploited for economic models. The DSMH algorithm is suitable for running in the GPU

environment, though there are issues one needs take into account. GPUs are most efficient

when the same sequence of instructions is executed over a set of data points. This is certainly

the case for the DSMH sampler but care needs be taken about branch points (if-then-else

statements). In this architecture, while one core executes an if-then statement, the other

cores that execute the if-else statements wait. Conversely, when the other cores execute

the if-else statements, the core that executes the if-then statement sits idle. This process

functions as if each branch of the if-then-else statement were executed by every core. It is for

this reason that an algorithm containing many branch points is less suitable for running on

the GPUs. The DSMH sampler for each group contains only two branch points: one branch

point is to make either a Metropolis-Hastings proposal draw or a striated proposal draw and

in each case the other branch point is to accept or reject the proposal. Furthermore, the

steps in each of the branches are algebraic operations or standard function evaluations on the

previously computed values except that the likelihood and prior density must be computed

if a Metropolis-Hastings proposal draw is made. Since expensive computations for most

dynamic models are the evaluation of the likelihood, the code in the pair of branch points is

executed in approximately the same amount of time as a single evaluation of the likelihood.

If the evaluation of the likelihood is amenable to the GPU environment as shown by Aldrich,

Fernández-Villaverde, Gallant, and Rubio-Ramı́rez (2011) and Durham and Geweke (2012),

so is the DSHM sampler.

III.5. Marginal Likelihood. The marginal likelihood, often called the marginal data den-

sity (MDD) in the macroeconomics literature, is

p(YT ) =

∫
Θ

p(YT | θ)π(θ)dθ. (6)

Computing the MDD is necessary for calculating the Bayes factor or the posterior odds ratio

when preforming model comparison. Estimation of the MDD is a by-product of the SMC

sampler and can be obtained with no extra computational costs.10 Such a by-product is

10For the EE sampler of Kou, Zhou, and Wong (2006), there is no discussion of how to estimate the MDD.
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also true of the DSMH sampler. Since f0(θ) = π(θ) is a proper probability density under

Condition 1, I0 =
∫
θ∈Θ

f0(θ)dθ = 1. For 1 ≤ i ≤ H,

Ii = Ii−1

∫
θ∈Θ

fλi(θ)

fλi−1
(θ)

fλi−1
(θ)

Ii−1

dθ.

Thus if Îi−1 is an estimate of Ii−1, then Ii can be estimated from the sample {θi−1,`}NG`=1 by

Îi =
Îi−1

NG

NG∑
`=1

fλi(θ
i−1,`)

fλi−1
(θi−1,`)

=
Îi−1

NG

NG∑
`=1

w̃
(i)
` . (7)

From (2) and (6) one can see that IH = p(YT ). Hence the MDD can be approximated by ÎH .

The estimates Îi are extremely fast to compute, but are inaccurate if the weights become

unbalanced. As discussed at the end of Section II.1.3, the simulated sample can still be

representative even if the importance weights are unbalanced. In Section V.4 we show that

the DSMH sampler is robust to relatively unbalanced weights as well as different tempering

schedules.

IV. Specific Difficulties for High-Dimensional Models

Consider economic or statistical models of the general form

YT =M(ET ; θ, ψ), (8)

where ET = (ε1, · · · , εT ) are unobserved exogenous shocks and ψ is a vector of nuisance pa-

rameters (e.g., unobserved regimes in Markov-switching models). This general form includes

VAR and DSGE models as a special case. For illustrative purposes, consider M(·) in the

following parametric form:

A(θ, ψ)YT = c(θ, ψ) + ET , (9)

where A(·) is an nT × nT matrix and c(·) is an nT -dimensional vector. Note that any

linear state-space model can be expressed in the form of (9), where A(·) and c(·) are often

complicated non-linear functions of θ and ψ. We assume, in our application, that yt and

εt have the same dimension of n, and ET has the standard Gaussian distribution.11 The

likelihood function for model (9) becomes

p(YT |θ, ψ) = |detA(θ, ψ)| exp

(
−1

2
(A(θ, ψ)YT − c(θ, ψ))′ (A(θ, ψ)YT − c(θ, ψ))

)
. (10)

The posterior kernel is p(YT |θ, ψ)π(θ, ψ), where π(θ, ψ) is the prior probability density. From

expression (10) one sees two major difficulties for estimating this kind of models:

(1) The determinant function is a multivariate polynomial of degree nT .

(2) A(·) and c(·) may be complicated nonlinear functions of the parameters.

11All these special assumptions can be relaxed, for the DSMH sampler applies to model (8) as long as the

prior density meets Condition 1.
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To deal with the first difficulty, we consider SVAR models in which there are no nuisance

parameters, both A(θ) and c(θ) are linear in θ, and the exponent in the exponential term of

(10) is quadratic. If the determinant term were not present in (10), the likelihood function

would be a Gaussian probability density. The determinant term, however, induces multiple

peaks and complicated ridges into the likelihood function as well as the posterior kernel.

Because the determinant term is prevalent in multivariate dynamic models (including DSGE

models), SVAR models provide a natural benchmark for testing the DSMH simulator.

For SVAR models, Waggoner and Zha (2003a) develop an efficient Gibbs sampler. Since it

is the exact Gibbs sampler, one can apply the method developed by Chib (1995) to accurately

compute the MDD (see also Fuentes-Albero and Melosi (2013)). For recursive SVAR mod-

els, the Gibbs sampler produces independent draws. If the identification is non-recursive,

the draws are serially correlated but convergence is so rapid that it is feasible to draw a

large number of starting values independently and then apply the Gibbs sampler to obtain

independent draws. Thus we can use the posterior draws generated by the Gibbs sampler as

the “truth” to gauge the accuracy of the DSMH sampler and help develop diagnostic tools

for more general models.

One class of more general models we study in this paper are Markov-switching SVARs

(MSSVARs) proposed by Sims and Zha (2006). This class involves nuisance parameters,

namely the hidden Markov states. In addition to the first difficulty discussed above, we now

encounter the second difficulty: A(·) and c(·) are much more complicated functions of the

underlying parameters. Because of this additional difficulty, posterior simulations become

even more challenging. Sims, Waggoner, and Zha (2008) use the Metropolis-within-Gibbs

algorithm to make posterior draws, but in general any specific Gibbs design depends on

a particular model specification and is prone to analytical and programming errors when

the model specification changes. The DSMH sampler is generic. In Section V.5 we use the

turning parameters and the diagnostic tool gained from our experiments with the benchmark

SVAR model to show how the DSMH sampler works for this complicated example.

V. Application

In this section we present two simultaneous-equation high-dimensional models for the

purpose of testing the DSMH sampler: an SVAR model and a Markov-switching SVAR

model. While both models pose significant challenges for any generic sampler, our main focus

is on the three-variable simultaneous-equation monthly model without Markov-switching

parameters.
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V.1. Benchmark SVAR. Structural vector autoregressions have the following representa-

tion:

y′tA0 = C ′ +
l∑

h=1

y′t−hAh + ε′t, for 1 ≤ t ≤ T , (11)

where

• l is the lag length;

• εt is an n-dimensional column vector of unobserved random i.i.d. standard Gaussian

shocks at time t;

• A0 is an invertible n× n matrix and Ah is an n× n matrix for 1 ≤ h ≤ l;

• C is an n× 1 vector of constant terms.

The initial conditions y0, · · · , y1−l are taken as given. In our notation, the parameter vector

θ is the collection of all the parameters in model (11). The prior distribution takes the

form suggested by Sims and Zha (1998), which expands on the original Minnesota prior of

Litterman (1986). The likelihood function is proportional to

|A0|T
n∏
k=1

exp

(
−T

2
θ′Σθ

)
, (12)

where Σ is a symmetric and positive definite matrix that depends on the data. For any

exclusion restrictions placed on some of the parameters, Waggoner and Zha (2003a) show

that the likelihood form (12) remains the same but θ is composed of only the parameters

that are not excluded. With Sims and Zha (1998)’s prior, the posterior kernel takes the form

(12) as well. Moreover, that paper derives a Gibbs sampler for any posterior kernel of form

(12) and shows that the Gibbs sampler is efficient and the sampled distribution converges

very rapidly.

If we raise the expression (12) to any positive power, the function form remains the same as

(12). Thus, the Gibbs sampler of Waggoner and Zha (2003a) applies to fλ(θ) for 0 ≤ λ ≤ 1.

We formalize this result in the following proposition.

Proposition 3. For model (11) with exclusion restrictions and the prior of Sims and Zha

(1998), there exists a Gibbs sampler for fλ(θ) for 0 ≤ λ ≤ 1.

This result is powerful because it enables researchers to gauge how well a particular sampler

performs at each stage indexed by λ.

V.2. Monthly Empirical Model. To show how the DSMH sampler handles the first dif-

ficulty highlighted in Section IV, we apply the DSMH sampler to a three-variable monthly

SVAR model with thirteen lags.12 The three variables are those commonly used by monetary

12We follow Sims and Zha (2006) and use thirteen lags to remove possible residual seasonality, even though

the data we use are seasonally adjusted. Our results, however, do not hinge on whether we use twelve lags
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DSGE models: log output gap (xt), GDP-deflator inflation (πt), and the federal funds rate

(Rt). The U.S. data are monthly from 1988:1 to 2014:6, covering the post-Volcker period of

U.S. history. Output gap is measured by the difference between actual real GDP and poten-

tial real GDP published by the Congressional Budget Office. Both actual and potential GDP

series as well as GDP deflator are interpolated to monthly frequency using the methodol-

ogy suggested by Leeper, Sims, and Zha (1996) and Bernanke, Gertler, and Watson (1997).

Federal funds rates are monthly average effective rates and annualized.

A majority of applications in the SVAR literature concern restrictions imposed on A0 and

we follow this approach in our application. The identification for the three-variable SVAR

follows Sims and Zha (2006) and is summarized as

A0 =

a0,11 a0,12 0

a0,21 a0,22 0

a0,31 0 a0,33

 , (13)

where columns represent equations. The identification (13) is non-recursive but the model

is globally identified, see Rubio-Ramı́rez, Waggoner, and Zha (2010). The identifying restric-

tions are consistent with new-Keynesian models but with fewer restrictions than the stylized

model of Rudebusch and Svensson (1999) to maintain the fit of the model. The first equa-

tion (the first column) characterizes the aggregate demand behavior in which output gap

responds to both inflation and the interest rate.13 The second equation (the second column)

is consistent with the Phillips-curve relationship in which inflation reacts to output gap. The

last equation (the third column) characterizes the monetary policy behavior that responds

to output gap and inflation with only one-month delay (this assumption is reasonable for

monthly data because the monetary authority has no information about GDP and its price

deflator within the month). The hyperparmaters for the prior, in the notation of Sims and

Zha (1998), is λ1 = 0.7, λ2 = 0.5, λ3 = 0.1, λ4 = 1.2, µ5 = 1.0, and µ6 = 1.0. Our empirical

results are not sensitive to this prior setting.

There are substantive reasons we choose model (11) to test the DSMH sampler for high-

dimensional problems. First, SVARs have served as a benchmark for other multivariate

dynamic models such as DSGE models. Second, model (11) with a long lag length or a

large number of variables presents a challenging high-dimensional problem. Even for our

“small-scale” three-variable SVAR model, the number of parameters is well over a hundred,

or thirteen lags. We simply use the conventional setup in the empirical VAR literature to show how various

generic samplers can handle a practical example that is used for empirical policy analysis and has common

dynamic features shared by a host of high-dimensional economic models.
13One could make a further restriction such that the coefficient of inflation and that of the interest rate

have the same magnitude but with opposite signs. This restriction means that output gap responds to the

current (realized) real interest rate.
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126 to be exact. Third, the posterior involves a term of the form |detA0|T . This is a

polynomial of degree nT , which for our monthly SVAR model is a polynomial of degree 915!

Since our identification is non-recursive, this high degree means that the likelihood function

contains many complicated winding ridges. Fourth, because we chose to work with the

unnormalized posterior kernel, there are 8 peaks for our model.14 This combination of not

imposing a normalization together with a identification scheme that involves simultaneity

makes the likelihood function as well as the posterior kernel unusually complicated. For all

these reasons, our SVAR model provides a natural platform for testing generic samplers.

According to Proposition 3, one is able to generate posterior draws very efficiently at each

stage i using the Gibbs sampler. If identification is recursive, the Gibbs sampler produces

independent draws. If the identification is non-recursive as in our case, the random draws are

serially correlated but, as shown in Waggoner and Zha (2003a), convergence is so rapid that

it is feasible to draw independently a large number of starting values and apply the Gibbs

sampler to obtain independent draws. Furthermore, one can apply the method developed

by Chib (1995) to accurately compute the MDD. Thus we use the posterior draws generated

by the Gibbs sampler as the “truth” to gauge the quality of the DSMH sampler and offer an

invaluable tool for improving the efficiency of this sampler by selecting appropriate values

of the tuning parameters.

V.3. Estimation Results. The tuning parameters for the DSMH sampler are set as N =

2000, G = 100, H = 50, M = 50, and T = 50 (see Table 1 for further reference). In the

multiuser environment of our high performance cluster, it is difficult to get meaningful timing

results since we have less control over the total load on the machine at any given time. On

our desktop workstation, a dual processor machine with a total of 24 hyperthreading cores, it

took a little less than 2 hours to complete a run with the above settings when we utilized 20

(out of 24) cores for our computations. The total number of simulations across all stages was

500,000,000. As a comparison, we apply the standard random-walk Metropolis sampler with

the same value of N , G, and T . We also used the SMC sampler of Herbst and Schorfheide

(2014) (or Bognanni and Herbst (2014)) and the EE sampler of Kou, Zhou, and Wong (2006).

The number of posterior draws for the EE sampler and the SMC sampler is configured to

make it compatible with the DSMH sampler for the same given amount of computing time.

Specifically, for the SMC sampler of Herbst and Schorfheide (2014) the number of stages is 50

14Given the likelihood form (12) and the symmetric prior, changing the sign of an equation in model (11)

does not change the posterior density value. Since there are 2n possible ways to change signs, there are

2n peaks in any unnormalized SVAR model. For detailed discussions, see Waggoner and Zha (2003b) and

Hamilton, Waggoner, and Zha (2007). As a scientific-reporting procedure, it is best to store the unnor-

malized posterior draws. If a researcher chooses a particular normalization rule for specific purposes, the

normalization can be applied to the stored unnormalized draws without additional computational costs.
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and at each stage 200,000 draws are saved. In the mutation step, 50 random-walk Metropolis

draws are made for each of the 200,000 resampled starting values and the last Metropolis

draw is saved. Bognanni and Herbst (2014) recommend many more stages, but only one

random-walk Metropolis draw for each of the resampled starting values. To keep the total

number of simulations the same, we have used 2,500 stages (far more than 50 stages) and

saved 200,000 draws per stage. We do not report the results of this simulation exercise as

they are similar to those obtained by the SMC sampler of Herbst and Schorfheide (2014). For

the EE sampler of Kou, Zhou, and Wong (2006), the settings are the same as in the DSMH

sampler. Again, with all the four samplers together, a total number of simulations across all

stages was 500,000,000. For each stage, we use 200,000 independent draws through the Gibbs

algorithm as the benchmark for comparison. For both the SMC and DSMH algorithms, we

use the two existing tempering schedules: geometric and quadratic.

In our application, there are four parameters related to the simultaneous relationship

between output gap and inflation: a0,11, a0,21, a0,12, and a0,22. For a clear illustration,

we concentrate on the posterior distribution of these four parameters and two additional

lagged parameters a7,11 and a7,21.15 Because it is impossible to display the six-dimensional

distribution, we display a two-dimensional distribution at a time. Although winding ridges

and multiple peaks in a higher-dimensional parameter space are much worse than what a

set of two-dimensional graphs can reveal, these graphs nonetheless give us a glimpse of the

distributional complexity we deal with.

Figure 2 displays the two-dimensional marginal posterior distribution of a0,11 and a0,22,

formed from the posterior draws. By “marginal” we mean the joint posterior probability of

a0,11 and a0,22 after integrating out all other parameters. The top panel of Figure 2, used

as the “truth,” displays the four local peaks connected by two shallow crossing ridges. The

bottom panel confirms that the straight random-walk Metropolis sampler fail to sample the

distribution with multiple peaks. The second panel shows that the SMC sampler is able to

trace out all the peaks, but assigns two much probability to shallow cross. As a result, the

height of the four peaks is lower than that displayed in the top panel. The DSMH sampler,

by contrast, is able to trace out the four peaks and the cross proportionately (the third

panel) so that the height is close to that displayed in the top panel.

The inability of the SMC sampler to meet the height of the distribution is manifested

in Figure 3 displaying the joint posterior distribution of a0,12 and a0,22. The shark-mouth

shape of the distribution displayed by both the Gibbs sampler and the DSMH sampler

is clearly misrepresented by the ring shape generated by the SMC sampler. The straight

random-walk Metropolis sampler fares much worse by missing not only the other local peak

15According to the form (11), a7,11 is the coefficient of the first variable in the first equation at the seventh

lag and a7,21 is the coefficient of the second variable in the second equation at the seventh lag.
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but also a good portion of winding ridges around the local peak covered by the Metropolis

draws. The reason that the straight random-walk Metropolis sampler cannot even cover the

region near the peak is due to the higher-dimensional problem not revealed by the multiple

two-dimensional distributions.

Figure 4, displaying the joint distribution of a7,11 and a7,21, presents another example of

the multimodal distribution missed by the SMC sampler, which generates a single-mound

distribution instead. To be sure, while the straight random-walk Metropolis sampler fails in

almost all dimensions, the SMC sampler performs remarkably well in many other dimensions,

which we do not report. But the multiple two-dimensional examples reported here indicate

that this three-variable empirical model challenges the SMC sampler severely. If one were

able to display a six-dimensional probability distribution of a0,11, a0,12, a0,21, a0,22, a7,11, and

a7,21, the picture would look much more complicated than each of the three figures. The joint

probability distribution of all 126 parameters would be beyond our visualization and imagi-

nation. From all three figures one can see that the DSMH sampler is capable of generating

the posterior draws representative of the underlying irregular posterior distribution.

There is another important lesson learned from this experiment: the inability to trace out

the unnormalized posterior distribution can affect estimation of the normalized parameters.

Take the monetary policy equation (the third equation) as an example. Once this equation

is normalized, the interest rate (the lefthand variable) responds to lagged interest rates,

output gap, and inflation (the righthand variables). As proposed by Sims and Zha (2006),

the average long-run coefficient of inflation in this interest rate rule, denoted by b̄π, can be

estimated as

b̄π =
E
(∑l

h=1 ah,23/a0,33

)
1− E

(∑l
h=1 ah,33/a0,33

) , (14)

where E stands for the mathematical expectation with respect to the posterior distribution.

Following Herbst and Schorfheide (2014), we compute the numerical standard error (NSE) for

b̄π by running the generic sampler repeatedly using a different random seed. The estimates

and the corresponding NSEs of b̄π by different samplers are reported below.

b̄π DSMH DSMH SMC SMC EE Truth

(geometric) (quadratic) (geometric) (quadratic) (Gibbs)

Estimate 1.195 1.182 0.881 1.093 1.183 1.187

NSE 0.0161 0.0136 0.0172 0.00406 0.0176 0.00203

The NSEs for these generic samplers are all very small. By this measure, the inflation

coefficient in the monetary policy equation is well estimated. These small NSEs, however,

fail to indicate the bias. The value of b̄π is above one according to the Gibbs sampler,

implying that monetary policy is hawkish by reacting to inflation strongly. The estimate
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from The DSMH sampler is very close to the “truth” from both the geometric and quadratic

tempering schedules, especially when one takes account of the NSEs. The EE sampler

fares surprising well in this dimension. But the values estimated by the SMC sampler with

both tempering schedules are downward biased with tight NSEs. The SMC sampler with

the geometric tempering schedule delivers the value that is qualitatively biased, giving an

inaccurate conclusion that monetary policy reacts to inflation dovishly.

To be sure, the SMC sampler in the literature does not use the geometric tempering

schedule. But the point of the above results is to illustrate that the DSMH algorithm

is robust to tempering scheduling. This is a very important property because, when the

truth is unknown, we are also uncertain of which tempering schedule is best for a particular

problem. The SMC sampler’s sensitivity to tempering scheduling is further illustrated in the

following section where we discuss another important normalized object: the marginal data

density.

V.4. Marginal Likelihood and Effective Sample Size. As discussed in Section III.5,

the MDD or the marginal likelihood is a by-product of the DSMH sampler. For the SMC

sampler, the quality of this by-product depends on the quality of importance weights mainly

because the sampler is grounded in importance sampling. Grounded in the Metropolis-

Hastings algorithm, the DSMH sampler by contrast is much less sensitive to the quality

of importance weights. Table 2 records the estimated integral constant according to (7),

the NSE, and the ESS at each stage, along with the estimated integral constant based on

independent posterior draws simulated through the algorithm of Chib (1995). The two

generic samplers are considered: the DSMH and SMC algorithms. The numerical standard

error for the estimated integral constant from importance weights is calculated as

NSE ≡ NSE
(

log Îi

)
=

√√√√ 1

G

G∑
j=1

[
log Î

(j)
i −

1

G

G∑
k=1

log Î
(j)
i

]2

,

where the superscript (j) stands for the jth group of posterior draws. We do not report the

NSEs for the independent draws based on Gibbs simulations because the errors are all within

second decimal points.

As one can see, the estimates of log integral constants by the SMC sampler are biased

by large margin. The NSEs do not detect such a bias because they are unrealistically small

relative to the actual error of the estimated integral constant from importance weights. If

we had not known the accurate estimate of the integral constant in the “Truth” column,

we would not have had the sense of the magnitude of the error. Thus, the NSE does not

measure how biased the MDD estimate is.

The ESSs do indicate that the importance weights become increasingly unbalanced for

the SMC sampler, especially toward the later stages. The ESSs deteriorates drastically for
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the DSMH sampler too, but the sampler is more robust to this deterioration for the reasons

articulated in previous sections. Even when the ESSs are adequate for the SMC in earlier

stages, the estimate of the log integral constant has begun to show a bias. The ESSs are not

the whole story. Table 3 reports the same objects with the quadratic tempering schedule

favored by the SMC literature. For the quadratic tempering schedule, the ESS increases

as the stage increases, but starts out at very low levels, often less than 10%. This is one

of the reasons the estimate bias from the SMC sampler is still very severe, suggesting that

one needs increase the number of stages especially at the beginning. If the number of stages

increases, the number of random-walk Metropolis draws would have to decrease so as to have

a fair comparison with the DSMH sampler. This is indeed what Bognanni and Herbst (2014)

advocate. We find, however, that the results generated by following their recommendation

are very similar.

The following table tabulates the estimate of log MDD at the final stage for various

samplers.

log MDD DSMH DSMH SMC SMC EE Truth

geometric quadratic geometric quadratic Gibbs

Estimate 4422.17 4422.10 4325.3 4348.65 4465.77 4422.00

NSE 0.19 0.03 4.63 0.49 0.31 0.03

As one can see, the EE sampler fares even worse and the bias of the estimate is the worse

among the competing algorithms.

V.5. Markov-switching SVARs. Because the DSMH sampler is generic, choosing appro-

priate values of its tuning parameters that work for high-dimensional problems is challenging.

The values that work well for the constant SVAR model serve as a very useful benchmark

when one applies the DSMH sampler to other high-dimensional problems. In this section we

apply it to a Markov-switching SVAR model in the form of

y′tA0 = C +
l∑

h=1

y′t−hAh + ε′tΞ
−1
st , for 1 ≤ t ≤ T , (15)

where Ξ−1
st is a diagonal matrix with the diagonal elements depending on a Markov pro-

cess represented by st with the κ× κ transition matrix Q = [qi,j] such that qi,j = Prob(st =

i|st−1 = j) for i, j = 1, . . . , κ. Markov-switching SVAR models have been effective in address-

ing relevant issues related to the 2008 financial crisis (Hubrich and Tetlow, Forthcoming).

Time-varying volatility such as changing uncertainty has been a prominent feature in the

data (Cogley and Sargent, 2005; Justiniano and Primiceri, 2008; Bloom, 2009; Fernández-

Villaverde, Guerrón-Quintana, Rubio-Ramı́rez, and Uribe, 2011). Sims, Waggoner, and Zha
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(2008) show that one tractable way to model time-varying volatility is to allow shock vari-

ances to follow a Markov process. If the identifying restrictions on A0 are non-recursive, we

no longer have the exact Gibbs sampler to generate independent draws.

To put the DSMH sampler to the test, we make the problem unusually demanding by

estimating again the unnormalized version of model (15) with a two-state Markov process for

st. The nonlinearity increases the complexity of the problem considerably by expanding the

magnitude of the first difficulty and introducing the second difficulty discussed in Section IV.

The tuning parameters are set as in the previous section: N = 2000, G = 100, H = 50,

M = 50, and T = 50. Using 20 (out of 24) cores of our workstation, a run with the

above tuning parameters took about 10 hours to complete, five times as long as for the

example without Markov-switching. Most of this additional computing time is spent in

computing the likelihood function. With Markov-switching, evaluation of the likelihood

function requires the Hamilton filter (Hamilton, 1989), which must loop through all the data

for each evaluation. With monthly data, this is an expensive computation.

Table 4 reports log values of the integral constants (log Îi) estimated by the Mueller

method described in Liu, Waggoner, and Zha (2011), those estimated by importance weights,

the NSEs, and the EESs at various stages.16 In comparison to Tables 2 and 3, there is

no “Truth” column because the exact Gibbs sampler is unavailable for this simultaneous-

equation Markov-switching SVAR model.

There are, however, several reasons for our confidence in the estimates reported in Ta-

ble 4. First, the Mueller method serves as cross-verification of the quality of the estimated

MDD through updated importance weights. The estimates by these two methods are very

close. Second, in this Markov-switching case, the Mueller method and the bridge-sampling

algorithm (Meng and Wong, 1996) deliver essentially the same MDD estimate. Third, the

DSMH sampler with the geometric schedule gives the estimate 4496.34, which is again very

close to the other estimates.

To summarize, we use the two three-variable SVAR models studied in this paper to demon-

strate two essential qualities of the DSMH sampler. First, the DSMH sampler has a remark-

able capacity to trace out entire complicated distributions in the high-dimensional parameter

space. Second, by combining the strengths of the SMC and equi-energy samplers, the DSMH

sampler is able to achieve computational efficiency for accurate statistical inferences within

a feasible computing time frame.

16We use Sims, Waggoner, and Zha (2008)’s elliptic probability density as a proposal density for the

Mueller method. Other efficient methods, including the bridge-sampling method (Meng and Wong, 1996),

give almost identical results.
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VI. Conclusion

We have shown that the DSMH sampler developed in this paper is capable of simulat-

ing incredibly irregular posterior distributions full of complicated ridges connecting multiple

peaks in the high-dimensional parameter space. We have intentionally set the bar high by

estimating two unnormalized monthly SVAR models with simultaneous equations and over

a hundred parameters. To illustrate how hard the problem is, we have displayed part of

the complexity inherent in this high-dimensional posterior distribution. The generic DSMH

sampler has proven to be a remarkably efficient posterior simulator dealing with such com-

plexity.

As common in any posterior simulator, technical details such as the appropriate range of

values for tuning parameters become indispensable. This task is challenging due to the nature

of high dimension and unusual irregularity imbedded in the posterior distribution. The values

of tuning parameters that work for our benchmark SVAR model provide a benchmark for

estimating other dynamic structural models for which the exact Gibbs sampler may not be

available. Indeed, we have applied the DSMH sampler to a Markov-switching SVAR model

and shown that the sampler remains efficient.

We exclusively focus on SVAR models not only because they serve as a benchmark for other

multivariate dynamic models but also because they provide a natural experiment for testing

any simulator against the “truth” (the independent draws generated by the Gibbs sampler).

If the simulator fails to trace out the labyrinthine shape of the posterior distribution as

graphically displayed in the paper, it sends a strong signal about its capability of estimating

other multivariate dynamic models when there is no known “truth” about the underlying

posterior distribution. It is our hope that the DSMH sampler, thoroughly tested against

high-dimensional SVAR models, will prove to be as powerful in other applications as in our

application.
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Figure 1. An illustrative example for tempered likelihoods. The thick dashed

line is the likelihood (the most peaked) and the thick solid line is the most

tempered likelihood (the flattest).
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Figure 2. The two-dimensional probability density of a0,11 (x-axis) and a0,22

(y-axis) (after integrating out all other parameters). The probability density

is formed empirically from the posterior draws generated by four algorithms:

the Gibbs sampler, the SMC sampler, the DSMH sampler, and the straight

random-walk Metropolis sampler.
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Figure 3. The two-dimensional probability density of a0,12 (y-axis) and a0,22

(x-axis) (after integrating out all other parameters). The probability density

is formed empirically from the posterior draws generated by four algorithms:

the Gibbs sampler, the SMC sampler, the DSMH sampler, and the straight

random-walk Metropolis sampler.
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Figure 4. The two-dimensional probability density of a7,11 (y-axis) and a7,21

(x-axis) (after integrating out all other parameters). The probability density

is formed empirically from the posterior draws generated by four algorithms:

the Gibbs sampler, the SMC sampler, the DSMH sampler, and the straight

random-walk Metropolis sampler.
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Table 1. Recommended values of tuning parameters

Parameter Recommended Value Faster Run Time More Reliable Sample

NG Problem specific Smaller Larger

H 50 Smaller Larger

T 50 Smaller Larger

λ1 1/(10nT ) - -

p 1/(10T ) - -

M 50 - -

[α0, α1] [0.2, 0.3] - -

GK 10,000 Smaller Larger

Note: G should be a multiple of the number of computing cores with N and K adjusting

to target NG and KG at their desired levels. α0, α1, and K are for selecting the

Metropolis scale parameter.
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Table 2. Estimated log integral constants (log Ii), NSEs, and ESSs for dif-

ferent samplers with log marginal data densities at the final stage under the

geometric tempering schedule

Stage Truth DSMH NSE ESS SMC NSE ESS

1 -0.6397 -0.6443 0.00 0.74 -0.6338 0.00 0.74

2 -0.7264 -0.7324 0.01 0.99 -0.7836 0.16 0.98

3 -0.8184 -0.8249 0.01 0.99 -0.9191 0.16 0.98

4 -0.9128 -0.9204 0.01 0.99 -1.0516 0.17 0.98

5 -1.0086 -1.0159 0.01 0.98 -1.1809 0.18 0.98

6 -1.0998 -1.1054 0.01 0.98 -1.3046 0.19 0.97

7 -1.1831 -1.1899 0.01 0.98 -1.4185 0.20 0.97

8 -1.2522 -1.2588 0.01 0.97 -1.5180 0.21 0.97

9 -1.3009 -1.3081 0.01 0.97 -1.5963 0.22 0.96

10 -1.3161 -1.3258 0.01 0.97 -1.6430 0.23 0.96

11 -1.2949 -1.3001 0.01 0.96 -1.6493 0.24 0.96

12 -1.2165 -1.2236 0.01 0.96 -1.6016 0.25 0.95

13 -1.0636 -1.0706 0.01 0.95 -1.5079 0.28 0.94

14 -0.8207 -0.8258 0.01 0.95 -1.3355 0.31 0.93

15 -0.4591 -0.4616 0.01 0.94 -1.0527 0.33 0.93
...

...
...

...
...

...
...

...

36 276.60 276.56 0.05 0.65 266.13 1.13 0.44

37 340.01 339.98 0.05 0.63 327.88 1.23 0.39

38 417.17 417.14 0.06 0.61 403.09 1.33 0.34

39 510.95 510.93 0.06 0.58 494.63 1.43 0.30

40 624.91 624.83 0.07 0.55 605.84 1.56 0.25

41 763.07 763.06 0.07 0.52 740.91 1.70 0.20

42 930.77 930.72 0.08 0.49 904.90 1.85 0.16

43 1134.1 1134.0 0.08 0.46 1103.8 2.05 0.11

44 1380.4 1380.3 0.10 0.42 1344.9 2.27 0.08

45 1678.8 1678.8 0.11 0.39 1637.0 2.54 0.05

46 2040.1 2040.1 0.12 0.36 1990.9 2.83 0.03

47 2477.5 2477.6 0.13 0.33 2419.4 3.18 0.01

48 3006.8 3006.9 0.15 0.30 2938.1 3.59 0.01

49 3647.3 3647.4 0.16 0.25 3565.8 4.07 0.00

50 4422.0 4422.2 0.19 0.23 4325.3 4.63 0.00

Note: “Truth” represents integral constants calculated from independent sampling through

Gibbs and the columns under “NSE” and “ESS” corresponds to the particular sampler

indicated at the top of the previous column.
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Table 3. Estimated log integral constants (log Ii), NSEs, and ESSs for dif-

ferent samplers with log marginal data densities at the final stage under the

quadratic tempering schedule

Stage Truth DSMH NSE ESS SMC NSE ESS

1 -1.2738 -1.2812 0.00 0.26 -1.2790 0.00 0.26

2 -0.0851 -0.1217 0.10 0.23 -8.2207 7.72 0.07

3 4.7143 4.6761 0.04 0.33 -2.5369 5.54 0.10

4 13.203 13.183 0.05 0.40 4.1351 5.19 0.10

5 25.458 25.414 0.06 0.46 14.829 4.47 0.11

6 41.424 41.394 0.05 0.51 29.799 3.38 0.17

7 61.162 61.133 0.04 0.56 48.577 2.39 0.24

8 84.661 84.618 0.04 0.61 70.414 2.13 0.27

9 111.87 111.83 0.04 0.63 96.062 1.84 0.31

10 142.82 142.80 0.04 0.66 125.54 1.58 0.36

11 177.51 177.49 0.04 0.69 158.64 1.45 0.39

12 215.90 215.92 0.03 0.71 195.51 1.32 0.42

13 258.06 258.07 0.04 0.74 236.17 1.20 0.46

14 303.90 303.93 0.03 0.75 280.53 1.12 0.49

15 353.48 353.49 0.04 0.76 328.63 1.05 0.51
...

...
...

...
...

...
...

...

36 2250.4 2250.4 0.04 0.90 2197.5 0.57 0.76

37 2381.5 2381.5 0.04 0.90 2327.2 0.56 0.77

38 2516.2 2516.2 0.03 0.90 2460.6 0.56 0.77

39 2654.6 2654.7 0.03 0.91 2597.6 0.55 0.78

40 2796.8 2796.8 0.03 0.91 2738.4 0.54 0.78

41 2942.7 2942.7 0.04 0.91 2882.8 0.54 0.78

42 3092.2 3092.3 0.04 0.91 3030.9 0.53 0.78

43 3245.5 3245.5 0.04 0.91 3182.7 0.53 0.79

44 3402.5 3402.5 0.04 0.91 3338.2 0.52 0.79

45 3563.1 3563.2 0.04 0.92 3497.4 0.52 0.79

46 3727.5 3727.6 0.03 0.92 3660.3 0.51 0.79

47 3895.4 3895.6 0.03 0.92 3826.8 0.51 0.80

48 4067.3 4067.4 0.03 0.92 3997.1 0.51 0.80

49 4242.8 4242.9 0.04 0.92 4171.0 0.50 0.80

50 4421.9 4422.1 0.04 0.92 4348.7 0.50 0.80

Note: “Truth” represents integral constants calculated from independent sampling through

Gibbs and the columns under “NSE” and “ESS” corresponds to the particular sampler

indicated at the top of the previous column.
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Table 4. Regime-switching BVAR: estimated log integral constants (log Ii),

NSEs, ESSs, and log marginal data densities at the final stage under the

quadratic tempering schedule

Stage DSMH (Mueller) DSMH (IW) NSE ESS

1 -1.1009 -0.9846 0.00 0.25

2 0.8707 0.9862 0.05 0.34

3 6.2041 6.3094 0.04 0.43

4 14.993 15.110 0.04 0.44

5 27.447 27.579 0.04 0.47

6 43.706 43.806 0.04 0.51

7 63.689 63.834 0.04 0.55

8 87.439 87.654 0.04 0.60

9 115.10 115.26 0.04 0.64

10 146.45 146.64 0.03 0.68

11 181.48 181.78 0.03 0.71

12 220.44 220.67 0.03 0.73

13 263.03 263.29 0.03 0.75

14 309.42 309.64 0.03 0.77

15 359.33 359.71 0.03 0.79
...

...
...

...
...

36 2276.8 2277.7 0.07 0.82

37 2409.6 2411.1 0.08 0.82

38 2546.9 2548.3 0.07 0.83

39 2687.2 2689.4 0.07 0.83

40 2831.6 2834.3 0.08 0.83

41 2981.1 2983.1 0.07 0.84

42 3133.2 3135.7 0.08 0.84

43 3288.7 3292.2 0.07 0.85

44 3450.2 3452.6 0.06 0.86

45 3613.9 3616.8 0.06 0.86

46 3782.1 3784.8 0.06 0.87

47 3951.8 3956.7 0.06 0.87

48 4129.1 4132.4 0.06 0.88

49 4309.2 4312.0 0.06 0.88

50 4493.0 4495.4 0.05 0.89

Note: “DSMH (Mueller)” represents integral constants estimated by applying the Mueller

method to DSMH draws, and “DSMH (IW)” stands for integral constants derived from the

importance weights as a byproduct according to (7).
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Appendix A. Pseudo Code for the DSMH Sampler

Algorithm for the DSMH sampler:

(1) For 1 < i ≤ H, set

λi = exp

(
H − i
H − 1

log(λ1)

)
.

(2) Set p = 1/(10T ).

(3) Draw NG samples from fλ0 . Denote the draws by (θ(0,`))NG`=1 and sort them so that

fλ0(θ
(0,`)) ≤ fλ0(θ

(0,`+1)). It is assumed that there exist algorithms for obtaining

draws from fλ0 .

(4) For i from 1 to H do

(a) Compute the variance matrix Ωi using the importance-weighted draws from the

previous stage.

Ωi =
NG∑
`=1

wi`θ
(i−1,`)(θ(i−1,`))′ −

(
NG∑
`=1

wi`θ
(i−1,`)

)(
NG∑
`=1

wi`θ
(i−1,`)

)′
(b) Tune ci so that the Gaussian Metropolis jumping kernel with variance matrix

ciΩi has an acceptance rate between α0 and α1.

(c) For 1 ≤ k ≤M − 1, let

Li,k = fλi−1
(θ(i−1,floor(kNG/M))).

(d) For j from 1 to G do

(i) Draw θ(i,j,0) from the previous stage’s draws using the importance weights.

(ii) For ` from 1 to NT do

(A) Draw u1 and u2 from the uniform distribution on (0, 1).

(B) If u1 < p, set k so that Li,k−1 ≤ fλi−1
(θ(i,j,`)) < Li,k and set θ̂(i,j,`+1) =

θ(i−1,floor((k−1+u2)NG/H)). Set

θ(i,j,`+1) =

θ̂(i,j,`+1) if
fλi (θ̂

(i,j,`+1))fλi−1
(θ(i,j,`))

fλi (θ
(i,j,`))fλi−1

(θ̂(i,j,`+1))
> u2

θ(i,j,`) otherwise
.

(C) If u1 ≥ p, draw θ̂(i,j,`+1) from the Gaussian distribution with mean

θ(i,j,`) and variance ciΩi. Set

θ(i,j,`+1) =

θ̂(i,j,`+1) if
fλi (θ̂

(i,j,`+1))

fλi (θ
(i,j,`))

> u2

θ(i,j,`) otherwise
.

(D) Save θ(i,j,`) if ` is a multiple of T .

(e) Merge all the saved draws. Denote these draws by (θ(i,`))NG`=1 and sort them so

that fλi(θ
(i,`)) ≤ fλi(θ

(i,`+1)).
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Appendix B. Pseudo-code for Tuning the Metropolis Scale

For 1 ≤ i ≤ H, the algorithm for tuning ci given Ωi is:

(1) Set

ci =

{
ci−1 if i > 1

1 if i = 1
.

(2) For j from 1 to G do

(a) Draw θ(i,j,0) from the previous stage’s draws using the importance weights.

(b) For ` from 1 to K do

(i) Draw u from the uniform distribution on (0, 1) and set cj = 0.

(ii) Draw θ̂(i,j,`+1) from the Gaussian distribution with mean θ(i,j,`) and variance

ciΩi and set

θ(i,j,`+1) =

θ̂(i,j,`+1) if
fλi (θ̂

(i,j,`+1))

fλi (θ
(i,j,`))

> u

θ(i,j,`) otherwise
.

If θ̂(i,j,`+1) was accepted, increment cj.

(3) Set

α =

∑G
j=1 cj

KG
.

If α ∈ (α0, α1) then done, otherwise set

ci =


1
5
ci if α ≤ (α0+α1

2
)5

log(
α0+α1

2
)

log(α)
ci if (α0+α1

2
)5 < α < (α0+α1

2
)
1
5

5ci if (α0+α1

2
)
1
5 ≤ α

and return to step (2).

In our application, we choose [α0, α1] = [0.2, 0.3] and K = 500. Since G varies between 20

and 50, KG is between 10,000 and 25,000. For many stages, we find that the tuning process

exits after one pass so that ci = ci−1.
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Raḿırez (2011): “Tapping the Supercomputer Under Your Desk: Solving Dynamic Equi-

librium Models with Graphics Processors,” Journal of Economic Dynamics and Control,

35(3), 386–393.

An, S., and F. Schorfheide (2007): “Bayesian Analysis of DSGE Models,” Econometric

Reviews, 26(2–4), 113–172.

Bauwens, L., C. S. Bos, H. K. van Dijk, and R. D. van Oest (2004): “Adaptive

Radial-Based Direction Sampling: Some Flexible and Robust Monte Carlo Integration

Methods,” Journal of Econometrics, 123(2), 201–225.

Bernanke, B. S., M. Gertler, and M. W. Watson (1997): “Systematic Monetary

Policy and the Effects of Oil Price Shocks,” Brookings Papers on Economic Activity, 1,

91–142.

Bloom, N. (2009): “The Impact of Uncertainty Shocks,” Econometrica, 77(3), 623–685.

Bognanni, M., and E. Herbst (2014): “Estimating (Markov-Switching) VAR Models

without Gibbs Sampling: A Sequential Monte Carlo Approach,” Unpublished Manuscript.

Chib, S. (1995): “Marginal Likelihood from the Gibbs Output,” Journal of the American

Statistical Association, 90, 1313–1321.

Chopin, N. (2004): “Central Limit Theorem for Sequential Monte Carlo Methods and its

Application to Bayesian Inference,” Annals of Statistics, 32, 2385–2411.

Christiano, L. J., M. S. Eichenbaum, and C. L. Evans (1999): “Monetary Policy

Shocks: What Have We Learned and To What End?,” in Handbook of Macroeconomics,

ed. by J. B. Taylor, and M. Woodford, vol. 1A, pp. 65–148. North-Holland, Amsterdam,

Holland.

(2005): “Nominal Rigidities and the Dynamic Effects of a Shock to Monetary

Policy,” Journal of Political Economy, 113, 1–45.

Cogley, T., and T. J. Sargent (2005): “Drifts and Volatilities: Monetary Policies and

Outcomes in the Post WWII U.S.,” Review of Economic Dynamics, 8, 262–302.

Del Negro, M., and F. Schorfheide (2004): “Priors from General Equilibrium Models

for VARs,” International Economic Review, 45, 643–673.

Durham, G., and J. Geweke (2012): “Adaptive Sequential Posterior Simulators for

Massively Parallel Computing Environments,” Unpublished Manuscript.

Fernández-Villaverde, J., P. Guerrón-Quintana, J. F. Rubio-Raḿırez, and
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